These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 2556684)

  • 21. Contribution of coronary endothelial cells to cardiac adenosine production.
    Deussen A; Möser G; Schrader J
    Pflugers Arch; 1986 Jun; 406(6):608-14. PubMed ID: 3086833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free radicals inhibit endothelium-dependent dilation in the coronary resistance bed.
    Stewart DJ; Pohl U; Bassenge E
    Am J Physiol; 1988 Oct; 255(4 Pt 2):H765-9. PubMed ID: 3177668
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of allopurinol, uric acid, and inosine administration on xanthine oxidoreductase activity and uric acid concentrations in broilers.
    Settle T; Carro MD; Falkenstein E; Radke W; Klandorf H
    Poult Sci; 2012 Nov; 91(11):2895-903. PubMed ID: 23091148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1984 Nov; 235(1):116-26. PubMed ID: 6093705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydroxyl radical generation by red tide algae.
    Oda T; Akaike T; Sato K; Ishimatsu A; Takeshita S; Muramatsu T; Maeda H
    Arch Biochem Biophys; 1992 Apr; 294(1):38-43. PubMed ID: 1312810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loss of contractile activity of endothelin-1 induced by electrical field stimulation-generated free radicals.
    Yasuda N; Kasuya Y; Yamada G; Hama H; Masaki T; Goto K
    Br J Pharmacol; 1994 Sep; 113(1):21-8. PubMed ID: 7812613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Possible significance of free oxygen radicals for reperfusion injury].
    Becker BF; Massoudy P; Permanetter B; Raschke P; Zahler S
    Z Kardiol; 1993; 82 Suppl 5():49-58. PubMed ID: 8154162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of xanthine oxidase by uric acid and its influence on superoxide radical production.
    Radi R; Tan S; Prodanov E; Evans RA; Parks DA
    Biochim Biophys Acta; 1992 Jul; 1122(2):178-82. PubMed ID: 1322703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of uric acid as an endogenous radical scavenger and antioxidant.
    Becker BF; Reinholz N; Leipert B; Raschke P; Permanetter B; Gerlach E
    Chest; 1991 Sep; 100(3 Suppl):176S-181S. PubMed ID: 1884644
    [No Abstract]   [Full Text] [Related]  

  • 30. Free-radical formation by mitomycin C and its novel analogs in cardiac microsomes and the perfused rat heart.
    Politi PM; Rajagopalan S; Sinha BK
    Biochim Biophys Acta; 1989 Sep; 992(3):341-8. PubMed ID: 2550081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for participation of hydroxyl radical in increased microvascular permeability.
    Björk J; del Maestro RF; Arfors KE
    Agents Actions Suppl; 1980; 7():208-13. PubMed ID: 6166180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxygen radicals: effects on intestinal vascular permeability.
    Parks DA; Shah AK; Granger DN
    Am J Physiol; 1984 Aug; 247(2 Pt 1):G167-70. PubMed ID: 6087676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of allopurinol on striatal dopamine, ascorbate and uric acid during an acute morphine challenge: ex vivo and in vivo studies.
    Enrico P; Esposito G; Mura MA; Migheli R; Serra PA; Desole MS; Miele E; De Natale G; Miele M
    Pharmacol Res; 1997 Jun; 35(6):577-85. PubMed ID: 9356212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myocardial dysfunction and ultrastructural alterations mediated by oxygen metabolites.
    Miki S; Ashraf M; Salka S; Sperelakis N
    J Mol Cell Cardiol; 1988 Nov; 20(11):1009-24. PubMed ID: 2853230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superoxide-dependent and -independent mechanisms of iron mobilization from ferritin by xanthine oxidase. Implications for oxygen-free-radical-induced tissue destruction during ischaemia and inflammation.
    Biemond P; Swaak AJ; Beindorff CM; Koster JF
    Biochem J; 1986 Oct; 239(1):169-73. PubMed ID: 3026367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of formaldehyde and acetone by hydroxyl-radical generating systems during the metabolism of tertiary butyl alcohol.
    Cederbaum AI; Qureshi A; Cohen G
    Biochem Pharmacol; 1983 Dec; 32(23):3517-24. PubMed ID: 6316986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The basal and stimulated release of the endothelium-derived relaxing factor from isolated pig coronary arteries does not interfere with the vascular release of superoxide.
    Brandes RP; Dwenger A; Mügge A
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Feb; 349(2):183-7. PubMed ID: 7513382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Free radicals-induced changes in mesenteric microvascular dimensions in the anesthetized cat.
    Okabe E; Todoki K; Odajima C; Ito H
    Jpn J Pharmacol; 1983 Dec; 33(6):1233-9. PubMed ID: 6321835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products.
    Kaur H; Halliwell B
    Chem Biol Interact; 1990; 73(2-3):235-47. PubMed ID: 2155712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Human low-density lipoproteins are peroxidized by free radicals via chain reactions triggered by the superoxide radical].
    Napoli C; Ambrosio G; Palumbo G; Elia PP; Chiariello M
    Cardiologia; 1991 Jul; 36(7):527-32. PubMed ID: 1665102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.