These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 25567058)
1. An analytical deterministic model for simultaneous phytoremediation of Ni and Cd from contaminated soils. Davari M; Homaee M; Rahnemaie R Environ Sci Pollut Res Int; 2015 Mar; 22(6):4609-20. PubMed ID: 25567058 [TBL] [Abstract][Full Text] [Related]
2. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate. Sun Y; Wen C; Liang X; He C Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654 [TBL] [Abstract][Full Text] [Related]
3. Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils. Davari M; Rahnemaie R; Homaee M Environ Sci Pollut Res Int; 2015 Sep; 22(17):13024-32. PubMed ID: 25921756 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of phytoremediation capability of French marigold ( Biswal B; Singh SK; Patra A; Mohapatra KK Int J Phytoremediation; 2022; 24(9):945-954. PubMed ID: 34634952 [TBL] [Abstract][Full Text] [Related]
5. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Steliga T; Kluk D Ecotoxicol Environ Saf; 2020 May; 194():110409. PubMed ID: 32155481 [TBL] [Abstract][Full Text] [Related]
6. The effect of long-term Cd and Ni exposure on seed endophytes of Agrostis capillaris and their potential application in phytoremediation of metal-contaminated soils. Truyens S; Jambon I; Croes S; Janssen J; Weyens N; Mench M; Carleer R; Cuypers A; Vangronsveld J Int J Phytoremediation; 2014; 16(7-12):643-59. PubMed ID: 24933875 [TBL] [Abstract][Full Text] [Related]
7. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Li Z; Wu L; Hu P; Luo Y; Zhang H; Christie P Environ Pollut; 2014 Jun; 189():176-83. PubMed ID: 24675367 [TBL] [Abstract][Full Text] [Related]
8. Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils. Wang Q; Gu M; Ma X; Zhang H; Wang Y; Cui J; Gao W; Gui J Environ Sci Pollut Res Int; 2015 Nov; 22(21):16758-71. PubMed ID: 26092360 [TBL] [Abstract][Full Text] [Related]
9. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils. Broadhurst CL; Chaney RL; Davis AP; Cox A; Kumar K; Reeves RD; Green CE Int J Phytoremediation; 2015; 17(1-6):25-39. PubMed ID: 25174422 [TBL] [Abstract][Full Text] [Related]
10. Using hyperaccumulator plants to phytoextract soil Ni and Cd. Chaney RL; Angle JS; McIntosh MS; Reeves RD; Li YM; Brewer EP; Chen KY; Roseberg RJ; Perner H; Synkowski EC; Broadhurst CL; Wang S; Baker AJ Z Naturforsch C J Biosci; 2005; 60(3-4):190-8. PubMed ID: 15948583 [TBL] [Abstract][Full Text] [Related]
11. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
12. Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH. Tahervand S; Jalali M Environ Monit Assess; 2016 Jun; 188(6):322. PubMed ID: 27147235 [TBL] [Abstract][Full Text] [Related]
13. Identification of Sesbania sesban (L.) Merr. as an Efficient and Well Adapted Phytoremediation Tool for Cd Polluted Soils. Varun M; Ogunkunle CO; D'Souza R; Favas P; Paul M Bull Environ Contam Toxicol; 2017 Jun; 98(6):867-873. PubMed ID: 28456824 [TBL] [Abstract][Full Text] [Related]
14. Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator. Li Z; Wu L; Luo Y; Christie P Chemosphere; 2018 Mar; 194():432-440. PubMed ID: 29227891 [TBL] [Abstract][Full Text] [Related]
15. Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils. Cao L; Jiang M; Zeng Z; Du A; Tan H; Liu Y Chemosphere; 2008 Apr; 71(9):1769-73. PubMed ID: 18342911 [TBL] [Abstract][Full Text] [Related]
16. Exogenous cytokinin treatments of an Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: implications for phytoextraction. Cassina L; Tassi E; Morelli E; Giorgetti L; Remorini D; Chaney RL; Barbafieri M Int J Phytoremediation; 2011; 13 Suppl 1():90-101. PubMed ID: 22046753 [TBL] [Abstract][Full Text] [Related]
17. Nickel phytoremediation potential of the Mediterranean Alyssoides utriculata (L.) Medik. Roccotiello E; Serrano HC; Mariotti MG; Branquinho C Chemosphere; 2015 Jan; 119():1372-1378. PubMed ID: 24630460 [TBL] [Abstract][Full Text] [Related]
18. Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. Chen X; Liu X; Zhang X; Cao L; Hu X J Hazard Mater; 2017 Mar; 325():319-326. PubMed ID: 27951500 [TBL] [Abstract][Full Text] [Related]
19. Increased accumulation of Pb and Cd from contaminated soil with Scirpus triqueter by the combined application of NTA and APG. Hu X; Liu X; Zhang X; Cao L; Chen J; Yu H Chemosphere; 2017 Dec; 188():397-402. PubMed ID: 28898773 [TBL] [Abstract][Full Text] [Related]
20. Assessing nickel bioavailability in smelter-contaminated soils. Everhart JL; McNear D; Peltier E; van der Lelie D; Chaney RL; Sparks DL Sci Total Environ; 2006 Aug; 367(2-3):732-44. PubMed ID: 16499951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]