These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25567113)

  • 21. Strong and Robust Electrochemical Artificial Muscles by Ionic-Liquid-in-Nanofiber-Sheathed Carbon Nanotube Yarns.
    Ren M; Qiao J; Wang Y; Wu K; Dong L; Shen X; Zhang H; Yang W; Wu Y; Yong Z; Chen W; Zhang Y; Di J; Li Q
    Small; 2021 Feb; 17(5):e2006181. PubMed ID: 33432780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Twist-Stabilized, Coiled Carbon Nanotube Yarns with Enhanced Capacitance.
    Son W; Chun S; Lee JM; Jeon G; Sim HJ; Kim HW; Cho SB; Lee D; Park J; Jeon J; Suh D; Choi C
    ACS Nano; 2022 Feb; 16(2):2661-2671. PubMed ID: 35072453
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tension-induced twist of twist-spun carbon nanotube yarns and its effect on their torsional behavior.
    Jeon SY; Kwon D; Yu WR
    Sci Rep; 2018 Apr; 8(1):6146. PubMed ID: 29670186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatiotemporal characteristics of neural activity in tibial nerves with carbon nanotube yarn electrodes.
    Yu X; Su JY; Guo JY; Zhang XH; Li RH; Chai XY; Chen Y; Zhang DG; Wang JG; Sui XH; Durand DM
    J Neurosci Methods; 2019 Dec; 328():108450. PubMed ID: 31577919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Power Hydro-Actuators Fabricated from Biomimetic Carbon Nanotube Coiled Yarns with Fast Electrothermal Recovery.
    Son W; Lee JM; Kim SH; Kim HW; Cho SB; Suh D; Chun S; Choi C
    Nano Lett; 2022 Mar; 22(6):2470-2478. PubMed ID: 35254078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bio-Inspired Hierarchical Carbon Nanotube Yarn with Ester Bond Cross-Linkages towards High Conductivity for Multifunctional Applications.
    Saleemi S; Aouraghe MA; Wei X; Liu W; Liu L; Siyal MI; Bae J; Xu F
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manufacturing polymer/carbon nanotube composite using a novel direct process.
    Tran CD; Lucas S; Phillips DG; Randeniya LK; Baughman RH; Tran-Cong T
    Nanotechnology; 2011 Apr; 22(14):145302. PubMed ID: 21346301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Creep and inverse stress relaxation behaviors of carbon nanotube yarns.
    Misak HE; Sabelkin V; Miller L; Asmatulu R; Mall S
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8331-9. PubMed ID: 24266232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon nanotube yarn strain sensors.
    Zhao H; Zhang Y; Bradford PD; Zhou Q; Jia Q; Yuan FG; Zhu Y
    Nanotechnology; 2010 Jul; 21(30):305502. PubMed ID: 20610871
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Elastic carbon nanotube straight yarns embedded with helical loops.
    Shang Y; Li Y; He X; Zhang L; Li Z; Li P; Shi E; Wu S; Cao A
    Nanoscale; 2013 Mar; 5(6):2403-10. PubMed ID: 23400109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ion Beam Modification of Carbon Nanotube Yarn in Air and Vacuum.
    Gigax JG; Bradford PD; Shao L
    Materials (Basel); 2017 Jul; 10(8):. PubMed ID: 28773219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Room-Temperature Hydrogen-Gas Sensor Based on Carbon Nanotube Yarn.
    Han M; Kim JK; Lee J; An HK; Yun JP; Kang SW; Jung D
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4011-4014. PubMed ID: 31968415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced energy harvester performance by a tension annealed carbon nanotube yarn at extreme temperatures.
    Hu X; Bao X; Wang J; Zhou X; Hu H; Wang L; Rajput S; Zhang Z; Yuan N; Cheng G; Ding J
    Nanoscale; 2022 Nov; 14(43):16185-16192. PubMed ID: 36278850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and process-dependent properties of solid-state spun carbon nanotube yarns.
    Fang S; Zhang M; Zakhidov AA; Baughman RH
    J Phys Condens Matter; 2010 Aug; 22(33):334221. PubMed ID: 21386511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-links in carbon nanotube assembly introduced by using polyacrylonitrile as precursor.
    Cui Y; Zhang M
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8173-8. PubMed ID: 23901778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing the Work Capacity of Electrochemical Artificial Muscles by Coiling Plies of Twist-Released Carbon Nanotube Yarns.
    Kim KJ; Hyeon JS; Kim H; Mun TJ; Haines CS; Li N; Baughman RH; Kim SJ
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13533-13537. PubMed ID: 30924629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and Characterization of Solid Composite Yarns from Carbon Nanotubes and Poly(dicyclopentadiene).
    Xin W; Severino J; Venkert A; Yu H; Knorr D; Yang JM; Carlson L; Hicks R; De Rosa I
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32290088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metallic conductivity transition of carbon nanotube yarns coated with silver particles.
    Zhang D; Zhang Y; Miao M
    Nanotechnology; 2014 Jul; 25(27):275702. PubMed ID: 24960558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced Hydro-Actuation and Capacitance of Electrochemically Inner-Bundle-Activated Carbon Nanotube Yarns.
    Son W; Lee JM; Chun S; Yu S; Noh JH; Kim HW; Cho SB; Kim SJ; Choi C
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13484-13494. PubMed ID: 36855828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Temperature Cross-Linking of Carbon Nanotube Multi-Yarn Using Polyvinylpyrrolidone as a Binding Agent.
    Misak H; Asmatulu R; Whitman J; Mall S
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2283-8. PubMed ID: 26413653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.