These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 25567353)

  • 41. Engineering photonic-plasmonic coupling in metal nanoparticle necklaces.
    Pasquale AJ; Reinhard BM; Dal Negro L
    ACS Nano; 2011 Aug; 5(8):6578-85. PubMed ID: 21739951
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Waveguide-coupled directional Raman radiation for surface analysis.
    Chen C; Li JY; Wang L; Lu DF; Qi ZM
    Phys Chem Chem Phys; 2015 Sep; 17(33):21278-87. PubMed ID: 25662793
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiple-wavelength plasmonic nanoantennas.
    Boriskina SV; Dal Negro L
    Opt Lett; 2010 Feb; 35(4):538-40. PubMed ID: 20160810
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates.
    Zhao Y; Li X; Du Y; Chen G; Qu Y; Jiang J; Zhu Y
    Nanoscale; 2014 Oct; 6(19):11112-20. PubMed ID: 25214169
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering.
    Petschulat J; Cialla D; Janunts N; Rockstuhl C; Hübner U; Möller R; Schneidewind H; Mattheis R; Popp J; Tünnermann A; Lederer F; Pertsch T
    Opt Express; 2010 Mar; 18(5):4184-97. PubMed ID: 20389431
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions.
    Ren W; Zhu C; Wang E
    Nanoscale; 2012 Sep; 4(19):5902-9. PubMed ID: 22899096
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures.
    Gühlke M; Heiner Z; Kneipp J
    Phys Chem Chem Phys; 2015 Oct; 17(39):26093-100. PubMed ID: 26377486
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering.
    Lee JP; Chen D; Li X; Yoo S; Bottomley LA; El-Sayed MA; Park S; Liu M
    Nanoscale; 2013 Dec; 5(23):11620-4. PubMed ID: 24126702
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays.
    Yang X; Zhong H; Zhu Y; Shen J; Li C
    Dalton Trans; 2013 Oct; 42(39):14324-30. PubMed ID: 23963100
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Alkylamine capped metal nanoparticle "inks" for printable SERS substrates, electronics and broadband photodetectors.
    Polavarapu L; Manga KK; Yu K; Ang PK; Cao HD; Balapanuru J; Loh KP; Xu QH
    Nanoscale; 2011 May; 3(5):2268-74. PubMed ID: 21491022
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing.
    Shiohara A; Langer J; Polavarapu L; Liz-Marzán LM
    Nanoscale; 2014 Aug; 6(16):9817-23. PubMed ID: 25027634
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface-enhanced Raman scattering from Au nanorods, nanotriangles, and nanostars with tuned plasmon resonances.
    Khlebtsov BN; Burov AM; Zarkov SV; Khlebtsov NG
    Phys Chem Chem Phys; 2023 Nov; 25(45):30903-30913. PubMed ID: 37955312
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasmonic Superstructure Arrays Fabricated by Laser Near-Field Reduction for Wide-Range SERS Analysis of Fluorescent Materials.
    Bai S; Hu A; Hu Y; Ma Y; Obata K; Sugioka K
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335783
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasmon-Free Surface-Enhanced Raman Spectroscopy Using α-Type MoO
    Yang J; Dang T; Ma S; Tang S; Ding Y; Seki M; Tabata H; Matsui H
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 39048517
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Power-law analysis of surface-plasmon-enhanced electromagnetic field dependence of blinking SERS of thiacyanine or thiacarbocyanine adsorbed on single silver nanoaggregates.
    Kitahama Y; Tanaka Y; Itoh T; Ozaki Y
    Phys Chem Chem Phys; 2011 Apr; 13(16):7439-48. PubMed ID: 21412542
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp.
    Bouillard JS; Vilain S; Dickson W; Wurtz GA; Zayats AV
    Sci Rep; 2012; 2():829. PubMed ID: 23170197
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods.
    Tsutsui Y; Hayakawa T; Kawamura G; Nogami M
    Nanotechnology; 2011 Jul; 22(27):275203. PubMed ID: 21597141
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ag@SiO2 core-shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering.
    Zhang CX; Su L; Chan YF; Wu ZL; Zhao YM; Xu HJ; Sun XM
    Nanotechnology; 2013 Aug; 24(33):335501. PubMed ID: 23881155
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioinspired Brochosomes as Broadband and Omnidirectional Surface-Enhanced Raman Scattering Substrates.
    Ding Q; Kang Y; Li W; Sun G; Liu H; Li M; Ye Z; Zhou M; Zhou J; Yang S
    J Phys Chem Lett; 2019 Nov; 10(21):6484-6491. PubMed ID: 31588754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.