BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25567451)

  • 1. Free-standing porous carbon nanofiber/ultrathin graphite hybrid for flexible solid-state supercapacitors.
    Qin K; Kang J; Li J; Shi C; Li Y; Qiao Z; Zhao N
    ACS Nano; 2015 Jan; 9(1):481-7. PubMed ID: 25567451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-Doped Porous Carbon Nanofibers/Porous Silver Network Hybrid for High-Rate Supercapacitor Electrode.
    Meng Q; Qin K; Ma L; He C; Liu E; He F; Shi C; Li Q; Li J; Zhao N
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30832-30839. PubMed ID: 28829117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layered-MnO₂ Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor.
    Liu Y; Miao X; Fang J; Zhang X; Chen S; Li W; Feng W; Chen Y; Wang W; Zhang Y
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5251-60. PubMed ID: 26842681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes.
    Tang P; Han L; Zhang L
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10506-15. PubMed ID: 24905133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layer by layer assembly of ultrathin V₂O₅ anchored MWCNTs and graphene on textile fabrics for fabrication of high energy density flexible supercapacitor electrodes.
    Shakir I; Ali Z; Bae J; Park J; Kang DJ
    Nanoscale; 2014 Apr; 6(8):4125-30. PubMed ID: 24604248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-in-One Compact Architecture toward Wearable All-Solid-State, High-Volumetric-Energy-Density Supercapacitors.
    Gao T; Zhou Z; Yu J; Cao D; Wang G; Ding B; Li Y
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23834-23841. PubMed ID: 29956918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous Carbon Nanofiber Flexible Membranes via a Bottlebrush Copolymer Template for Enhanced High-Performance Supercapacitors.
    Zhao Y; Huang B; Ji Y; Yu Y; Gao X; Zhang Z; Fei HF
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5644-5656. PubMed ID: 36689682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid nanomembranes for high power and high energy density supercapacitors and their yarn application.
    Lee JA; Shin MK; Kim SH; Kim SJ; Spinks GM; Wallace GG; Ovalle-Robles R; Lima MD; Kozlov ME; Baughman RH
    ACS Nano; 2012 Jan; 6(1):327-34. PubMed ID: 22168757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilayered poly(p-phenylenevinylene)/reduced graphene oxide film: an efficient organic current collector in an all-plastic supercapacitor.
    Wee BH; Hong JD
    Langmuir; 2014 May; 30(18):5267-75. PubMed ID: 24773165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode.
    Zeng L; Pan F; Li W; Jiang Y; Zhong X; Yu Y
    Nanoscale; 2014 Aug; 6(16):9579-87. PubMed ID: 25008943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics.
    Xie B; Yang C; Zhang Z; Zou P; Lin Z; Shi G; Yang Q; Kang F; Wong CP
    ACS Nano; 2015 Jun; 9(6):5636-45. PubMed ID: 25938988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Flexible All-Solid Supercapacitors with Direct Sputter-Grown Needle-Like Mn/MnO
    Ray A; Korkut D; Saruhan B
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32906762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Templated 3D ultrathin CVD graphite networks with controllable geometry: synthesis and application as supercapacitor electrodes.
    Hsia B; Kim MS; Luna LE; Mair NR; Kim Y; Carraro C; Maboudian R
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18413-7. PubMed ID: 25318008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors.
    Wu C; Lu X; Peng L; Xu K; Peng X; Huang J; Yu G; Xie Y
    Nat Commun; 2013; 4():2431. PubMed ID: 24026224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial conversion of current collectors into nickel copper oxide electrode materials for high-performance energy storage devices.
    Zhang L; Gong H
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15277-84. PubMed ID: 26098672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Porous and Conductive Graphite Nanonetwork Forming on the Surface of KCu
    Shen WX; Xu JM; Dai SG; Zhang ZF
    Front Chem; 2018; 6():555. PubMed ID: 30519556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallic Fabrics as the Current Collector for High-Performance Graphene-Based Flexible Solid-State Supercapacitor.
    Yu J; Wu J; Wang H; Zhou A; Huang C; Bai H; Li L
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4724-9. PubMed ID: 26830192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
    Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X
    ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.
    Cheng Y; Zhang H; Lu S; Varanasi CV; Liu J
    Nanoscale; 2013 Feb; 5(3):1067-73. PubMed ID: 23254316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave-assisted chemical-vapor-induced in situ polymerization of polyaniline nanofibers on graphite electrode for high-performance supercapacitor.
    Li X; Yang L; Lei Y; Gu L; Xiao D
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19978-89. PubMed ID: 25361469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.