These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 25567494)

  • 1. Adaptation, migration or extirpation: climate change outcomes for tree populations.
    Aitken SN; Yeaman S; Holliday JA; Wang T; Curtis-McLane S
    Evol Appl; 2008 Feb; 1(1):95-111. PubMed ID: 25567494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Range margin populations show high climate adaptation lags in European trees.
    Fréjaville T; Vizcaíno-Palomar N; Fady B; Kremer A; Benito Garzón M
    Glob Chang Biol; 2020 Feb; 26(2):484-495. PubMed ID: 31642570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time to get moving: assisted gene flow of forest trees.
    Aitken SN; Bemmels JB
    Evol Appl; 2016 Jan; 9(1):271-90. PubMed ID: 27087852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forest tree species adaptation to climate across biomes: Building on the legacy of ecological genetics to anticipate responses to climate change.
    Leites L; Benito Garzón M
    Glob Chang Biol; 2023 Sep; 29(17):4711-4730. PubMed ID: 37029765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential for evolutionary responses to climate change - evidence from tree populations.
    Alberto FJ; Aitken SN; Alía R; González-Martínez SC; Hänninen H; Kremer A; Lefèvre F; Lenormand T; Yeaman S; Whetten R; Savolainen O
    Glob Chang Biol; 2013 Jun; 19(6):1645-61. PubMed ID: 23505261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genotypic variation and plasticity in climate-adaptive traits after range expansion and fragmentation of red spruce (
    Prakash A; DeYoung S; Lachmuth S; Adams JL; Johnsen K; Butnor JR; Nelson DM; Fitzpatrick MC; Keller SR
    Philos Trans R Soc Lond B Biol Sci; 2022 Apr; 377(1848):20210008. PubMed ID: 35184589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecological genetics of
    Onofrio L; Hawley G; Leites LP
    Ecol Evol; 2021 Jun; 11(12):7399-7410. PubMed ID: 34188822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low but significant evolutionary potential for growth, phenology and reproduction traits in European beech.
    Westergren M; Archambeau J; Bajc M; Damjanić R; Theraroz A; Kraigher H; Oddou-Muratorio S; González-Martínez SC
    Mol Ecol; 2023 Nov; ():. PubMed ID: 37962106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species.
    Vitasse Y; Hoch G; Randin CF; Lenz A; Kollas C; Scheepens JF; Körner C
    Oecologia; 2013 Mar; 171(3):663-78. PubMed ID: 23306445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two are better than one: combining landscape genomics and common gardens for detecting local adaptation in forest trees.
    Lepais O; Bacles CF
    Mol Ecol; 2014 Oct; 23(19):4671-3. PubMed ID: 25263401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bud phenology and growth are subject to divergent selection across a latitudinal gradient in Populus angustifolia and impact adaptation across the distributional range and associated arthropods.
    Evans LM; Kaluthota S; Pearce DW; Allan GJ; Floate K; Rood SB; Whitham TG
    Ecol Evol; 2016 Jul; 6(13):4565-81. PubMed ID: 27386097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Range Position on Locally Adaptive Gene-Environment Associations in Populus Flowering Time Genes.
    Keller SR; Chhatre VE; Fitzpatrick MC
    J Hered; 2017 Dec; 109(1):47-58. PubMed ID: 29126208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide shifts in climate-related variation underpin responses to selective breeding in a widespread conifer.
    MacLachlan IR; McDonald TK; Lind BM; Rieseberg LH; Yeaman S; Aitken SN
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33649218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common garden comparisons confirm inherited differences in sensitivity to climate change between forest tree species.
    Sáenz-Romero C; Kremer A; Nagy L; Újvári-Jármay É; Ducousso A; Kóczán-Horváth A; Hansen JK; Mátyás C
    PeerJ; 2019; 7():e6213. PubMed ID: 30671299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Jack pine of all trades: Deciphering intraspecific variability of a key adaptive trait at the rear edge of a widespread fire-embracing North American conifer.
    Pelletier E; de Lafontaine G
    Am J Bot; 2023 Feb; 110(2):e16111. PubMed ID: 36462149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking lags in historical plant species' shifts in relation to regional climate change.
    Ash JD; Givnish TJ; Waller DM
    Glob Chang Biol; 2017 Mar; 23(3):1305-1315. PubMed ID: 27416325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reforestation of high elevation pines: Direct seeding success depends on seed source and sowing environment.
    Hankin LE; Leger EA; Bisbing SM
    Ecol Appl; 2023 Sep; 33(6):e2897. PubMed ID: 37305925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assisted migration across fixed seed zones detects adaptation lags in two major North American tree species.
    Etterson JR; Cornett MW; White MA; Kavajecz LC
    Ecol Appl; 2020 Jul; 30(5):e02092. PubMed ID: 32058650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptational lag to temperature in valley oak (
    Browne L; Wright JW; Fitz-Gibbon S; Gugger PF; Sork VL
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25179-25185. PubMed ID: 31767740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra- and interspecific tree growth across a long altitudinal gradient in the Peruvian Andes.
    Rapp JM; Silman MR; Clark JS; Girardin CA; Galiano D; Tito R
    Ecology; 2012 Sep; 93(9):2061-72. PubMed ID: 23094378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.