These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25567644)

  • 1. Avoiding tipping points in fisheries management through Gaussian process dynamic programming.
    Boettiger C; Mangel M; Munch S
    Proc Biol Sci; 2015 Feb; 282(1801):20141631. PubMed ID: 25567644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical precautionary resource management using robust optimization.
    Woodward RT; Tomberlin D
    Environ Manage; 2014 Oct; 54(4):828-39. PubMed ID: 25117588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive management of animal populations with significant unknowns and uncertainties: a case study.
    Gerber BD; Kendall WL
    Ecol Appl; 2018 Jul; 28(5):1325-1341. PubMed ID: 29696712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolving the Measurement Uncertainty Paradox in Ecological Management.
    Memarzadeh M; Boettiger C
    Am Nat; 2019 May; 193(5):645-660. PubMed ID: 31002569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian uncertainty analysis of cetacean demography and bycatch mortality using age-at-death data.
    Moore JE; Read AJ
    Ecol Appl; 2008 Dec; 18(8):1914-31. PubMed ID: 19263888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainability of fisheries through marine reserves: a robust modeling analysis.
    Doyen L; Béné C
    J Environ Manage; 2003 Sep; 69(1):1-13. PubMed ID: 12927147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of Allee effects for fisheries management in a changing climate: evidence from Atlantic cod.
    Winter AM; Richter A; Eikeset AM
    Ecol Appl; 2020 Jan; 30(1):e01994. PubMed ID: 31468660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian inference and assessment for rare-event bycatch in marine fisheries: a drift gillnet fishery case study.
    Martin SL; Stohs SM; Moore JE
    Ecol Appl; 2015 Mar; 25(2):416-29. PubMed ID: 26263664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timescales and the management of ecological systems.
    Hastings A
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14568-14573. PubMed ID: 27729535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Applied Framework for Incorporating Multiple Sources of Uncertainty in Fisheries Stock Assessments.
    Scott F; Jardim E; Millar CP; Cerviño S
    PLoS One; 2016; 11(5):e0154922. PubMed ID: 27163586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decision-making for ecosystem-based management: evaluating options for a krill fishery with an ecosystem dynamics model.
    Watters GM; Hill SL; Hinke JT; Matthews J; Reid K
    Ecol Appl; 2013 Jun; 23(4):710-25. PubMed ID: 23865224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian decision analysis for evaluating management options to promote recovery of a depleted salmon population.
    Pestes LR; Peterman RM; Bradford MJ; Wood CC
    Conserv Biol; 2008 Apr; 22(2):351-61. PubMed ID: 18241234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating fisheries conservation strategies in the socio-ecological system: A grid-based dynamic model to link spatial conservation prioritization tools with tactical fisheries management.
    Li Y; Sun M; Zhang C; Zhang Y; Xu B; Ren Y; Chen Y
    PLoS One; 2020; 15(4):e0230946. PubMed ID: 32243469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. This is more difficult than we thought! The responsibility of scientists, managers and stakeholders to mitigate the unsustainability of marine fisheries.
    Caddy JF; Seijo JC
    Philos Trans R Soc Lond B Biol Sci; 2005 Jan; 360(1453):59-75. PubMed ID: 15713588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drawbacks of complex models in frequentist and Bayesian approaches to natural-resource management.
    Adkison MD
    Ecol Appl; 2009 Jan; 19(1):198-205. PubMed ID: 19323183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regime shift dynamics, tipping points and the success of fisheries management.
    Blöcker AM; Gutte HM; Bender RL; Otto SA; Sguotti C; Möllmann C
    Sci Rep; 2023 Jan; 13(1):289. PubMed ID: 36609587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating diverse model results into decision support for good environmental status and blue growth.
    Uusitalo L; Blenckner T; Puntila-Dodd R; Skyttä A; Jernberg S; Voss R; Müller-Karulis B; Tomczak MT; Möllmann C; Peltonen H
    Sci Total Environ; 2022 Feb; 806(Pt 2):150450. PubMed ID: 34599959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological ensemble modeling to evaluate potential futures of living marine resources.
    Gårdmark A; Lindegren M; Neuenfeldt S; Blenckner T; Heikinheimo O; Müller-Karulis B; Niiranen S; Tomczak MT; Aro E; Wikström A; Möllmann C
    Ecol Appl; 2013 Jun; 23(4):742-54. PubMed ID: 23865226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How ecological processes shape the outcomes of stock enhancement and harvest regulations in recreational fisheries.
    Johnston FD; Allen MS; Beardmore B; Riepe C; Pagel T; Hühn D; Arlinghaus R
    Ecol Appl; 2018 Dec; 28(8):2033-2054. PubMed ID: 30144215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overcoming the Data Crisis in Biodiversity Conservation.
    Kindsvater HK; Dulvy NK; Horswill C; Juan-Jordá MJ; Mangel M; Matthiopoulos J
    Trends Ecol Evol; 2018 Sep; 33(9):676-688. PubMed ID: 30007845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.