BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25567717)

  • 1. [Design and fabrication of the custom-made titanium condyle by selective laser melting technology].
    Chen J; Luo C; Zhang C; Zhang G; Qiu W; Zhang Z
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2014 Oct; 49(10):625-30. PubMed ID: 25567717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of titanium alloy frameworks for complete dentures by selective laser melting.
    Kanazawa M; Iwaki M; Minakuchi S; Nomura N
    J Prosthet Dent; 2014 Dec; 112(6):1441-7. PubMed ID: 25258261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology.
    Chen J; Zhang Z; Chen X; Zhang C; Zhang G; Xu Z
    J Prosthet Dent; 2014 Nov; 112(5):1088-95.e1. PubMed ID: 24939253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A custom-made temporomandibular joint prosthesis for fabrication by selective laser melting: Finite element analysis.
    Xu X; Luo D; Guo C; Rong Q
    Med Eng Phys; 2017 Aug; 46():1-11. PubMed ID: 28629601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and mechanical properties of Cresco-Ti laser-welded joints and stress analyses using finite element models of fixed distal extension and fixed partial prosthetic designs.
    Uysal H; Kurtoglu C; Gurbuz R; Tutuncu N
    J Prosthet Dent; 2005 Mar; 93(3):235-44. PubMed ID: 15775924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue behavior of thin-walled grade 2 titanium samples processed by selective laser melting. Application to life prediction of porous titanium implants.
    Lipinski P; Barbas A; Bonnet AS
    J Mech Behav Biomed Mater; 2013 Dec; 28():274-90. PubMed ID: 24008139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of bilateral ramus-condyle unit defect using custom titanium prosthesis with preservation of both condyles.
    Farajpour H; Bastami F; Bohlouli M; Khojasteh A
    J Mech Behav Biomed Mater; 2021 Dec; 124():104765. PubMed ID: 34509905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated approach of topology optimized design and selective laser melting process for titanium implants materials.
    Xiao D; Yang Y; Su X; Wang D; Sun J
    Biomed Mater Eng; 2013; 23(5):433-45. PubMed ID: 23988713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel root analogue dental implant using CT scan and CAD/CAM: selective laser melting technology.
    Figliuzzi M; Mangano F; Mangano C
    Int J Oral Maxillofac Surg; 2012 Jul; 41(7):858-62. PubMed ID: 22377004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting.
    Wu L; Zhu H; Gai X; Wang Y
    J Prosthet Dent; 2014 Jan; 111(1):51-5. PubMed ID: 24161258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal design of an individual endoprosthesis for the reconstruction of extensive mandibular defects with finite element analysis.
    Li P; Shen L; Li J; Liang R; Tian W; Tang W
    J Craniomaxillofac Surg; 2014 Jan; 42(1):73-8. PubMed ID: 23541861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties, corrosion resistance, and anti-adherence characterization of pure titanium fabricated by casting, milling, and selective laser melting.
    Wang Y; Guo Y; Jin Y; Wang Y; Wang C
    J Biomed Mater Res B Appl Biomater; 2022 Jul; 110(7):1523-1534. PubMed ID: 35226794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting.
    Shaoki A; Xu JY; Sun H; Chen XS; Ouyang J; Zhuang XM; Deng FL
    Biofabrication; 2016 Oct; 8(4):045014. PubMed ID: 27788123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of load transfers in TMJ replacement using a standard and a custom-made temporal component.
    Ramos A; Mesnard M
    J Craniomaxillofac Surg; 2014 Dec; 42(8):1766-72. PubMed ID: 25009108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How does the surface treatment change the cytocompatibility of implants made by selective laser melting?
    Matouskova L; Ackermann M; Horakova J; Capek L; Henys P; Safka J
    Expert Rev Med Devices; 2018 Apr; 15(4):313-321. PubMed ID: 29561177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and mechanical characterization of porous titanium bone substitutes.
    Barbas A; Bonnet AS; Lipinski P; Pesci R; Dubois G
    J Mech Behav Biomed Mater; 2012 May; 9():34-44. PubMed ID: 22498281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.
    Tsukanaka M; Fujibayashi S; Takemoto M; Matsushita T; Kokubo T; Nakamura T; Sasaki K; Matsuda S
    Dent Mater J; 2016; 35(1):118-25. PubMed ID: 26830832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Custom-made titanium devices as membranes for bone augmentation in implant treatment: Modeling accuracy of titanium products constructed with selective laser melting.
    Otawa N; Sumida T; Kitagaki H; Sasaki K; Fujibayashi S; Takemoto M; Nakamura T; Yamada T; Mori Y; Matsushita T
    J Craniomaxillofac Surg; 2015 Sep; 43(7):1289-95. PubMed ID: 26183658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.