These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 25567753)

  • 1. A high-resolution computational model of the deforming human heart.
    Gurev V; Pathmanathan P; Fattebert JL; Wen HF; Magerlein J; Gray RA; Richards DF; Rice JJ
    Biomech Model Mechanobiol; 2015 Aug; 14(4):829-49. PubMed ID: 25567753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preconditioned augmented Lagrangian formulation for nearly incompressible cardiac mechanics.
    Campos JO; Dos Santos RW; Sundnes J; Rocha BM
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2948. PubMed ID: 29181888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breaking the state of the heart: meshless model for cardiac mechanics.
    Lluch È; De Craene M; Bijnens B; Sermesant M; Noailly J; Camara O; Morales HG
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1549-1561. PubMed ID: 31161351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue.
    Thorvaldsen T; Osnes H; Sundnes J
    Comput Methods Biomech Biomed Engin; 2005 Dec; 8(6):369-79. PubMed ID: 16393874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An anatomical heart model with applications to myocardial activation and ventricular mechanics.
    Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW
    Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation.
    Augustin CM; Neic A; Liebmann M; Prassl AJ; Niederer SA; Haase G; Plank G
    J Comput Phys; 2016 Jan; 305():622-646. PubMed ID: 26819483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics.
    Hirschvogel M; Bassilious M; Jagschies L; Wildhirt SM; Gee MW
    Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2842. PubMed ID: 27743468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modelling of active contraction in isolated cardiomyocytes.
    Ruiz-Baier R; Gizzi A; Rossi S; Cherubini C; Laadhari A; Filippi S; Quarteroni A
    Math Med Biol; 2014 Sep; 31(3):259-83. PubMed ID: 23760444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmented Lagrange methods for quasi-incompressible materials--applications to soft biological tissue.
    Brinkhues S; Klawonn A; Rheinbach O; Schröder J
    Int J Numer Method Biomed Eng; 2013 Mar; 29(3):332-50. PubMed ID: 23345136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of preconditioned Krylov subspace methods with reordering for linear systems from a biphasic v-p finite element formulation.
    Yang T; Spilker RL
    Comput Methods Biomech Biomed Engin; 2007 Feb; 10(1):13-24. PubMed ID: 18651268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthotropic active strain models for the numerical simulation of cardiac biomechanics.
    Rossi S; Ruiz-Baier R; Pavarino LF; Quarteroni A
    Int J Numer Method Biomed Eng; 2012; 28(6-7):761-88. PubMed ID: 25364850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An active strain electromechanical model for cardiac tissue.
    Nobile F; Quarteroni A; Ruiz-Baier R
    Int J Numer Method Biomed Eng; 2012 Jan; 28(1):52-71. PubMed ID: 25830205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced-order preconditioning for bidomain simulations.
    Deo M; Bauer S; Plank G; Vigmond E
    IEEE Trans Biomed Eng; 2007 May; 54(5):938-42. PubMed ID: 17518292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite element model of myocardial infarction using a composite material approach.
    Haddad SMH; Samani A
    Comput Methods Biomech Biomed Engin; 2018 Jan; 21(1):33-46. PubMed ID: 29252005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A modular inverse elastostatics approach to resolve the pressure-induced stress state for in vivo imaging based cardiovascular modeling.
    Peirlinck M; De Beule M; Segers P; Rebelo N
    J Mech Behav Biomed Mater; 2018 Sep; 85():124-133. PubMed ID: 29886406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A robust and efficient iterative method for hyper-elastodynamics with nested block preconditioning.
    Liu J; Marsden AL
    J Comput Phys; 2019 Apr; 383():72-93. PubMed ID: 31595091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite-element model for the mechanical analysis of skeletal muscles.
    Johansson T; Meier P; Blickhan R
    J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.