These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 25567947)
21. Seasonal Declines in Cry1Ac and Cry2Ab Concentration in Maturing Cotton Favor Faster Evolution of Resistance to Pyramided Bt Cotton in Helicoverpa zea (Lepidoptera: Noctuidae). Carrière Y; Degain B; Unnithan GC; Harpold VS; Li X; Tabashnik BE J Econ Entomol; 2019 Dec; 112(6):2907-2914. PubMed ID: 31587050 [TBL] [Abstract][Full Text] [Related]
22. Global Patterns of Insect Resistance to Transgenic Bt Crops: The First 25 Years. Tabashnik BE; Fabrick JA; Carrière Y J Econ Entomol; 2023 Apr; 116(2):297-309. PubMed ID: 36610076 [TBL] [Abstract][Full Text] [Related]
23. Early detection of field-evolved resistance to Bt cotton in China: cotton bollworm and pink bollworm. Tabashnik BE; Wu K; Wu Y J Invertebr Pathol; 2012 Jul; 110(3):301-6. PubMed ID: 22537835 [TBL] [Abstract][Full Text] [Related]
24. Effects of cotton cultivar on fitness costs associated with resistance of pink bollworm (Lepidoptera: Gelechiidae) to Bt cotton. Carrière Y; Ellers-Kirk C; Biggs R; Degain B; Holley D; Yafuso C; Evans P; Dennehy TJ; Tabashnik BE J Econ Entomol; 2005 Jun; 98(3):947-54. PubMed ID: 16022327 [TBL] [Abstract][Full Text] [Related]
25. Delaying evolution of insect resistance to transgenic crops by decreasing dominance and heritability. Tabashnik BE; Gould F; Carrière Y J Evol Biol; 2004 Jul; 17(4):904-12; discussion 913-8. PubMed ID: 15271091 [TBL] [Abstract][Full Text] [Related]
26. Assessing the role of non-cotton refuges in delaying Helicoverpa armigera resistance to Bt cotton in West Africa. Brévault T; Nibouche S; Achaleke J; Carrière Y Evol Appl; 2012 Jan; 5(1):53-65. PubMed ID: 25568029 [TBL] [Abstract][Full Text] [Related]
27. Sustained susceptibility of pink bollworm to Bt cotton in the United States. Tabashnik BE; Morin S; Unnithan GC; Yelich AJ; Ellers-Kirk C; Harpold VS; Sisterson MS; Ellsworth PC; Dennehy TJ; Antilla L; Liesner L; Whitlow M; Staten RT; Fabrick JA; Li X; Carrière Y GM Crops Food; 2012; 3(3):194-200. PubMed ID: 22572905 [TBL] [Abstract][Full Text] [Related]
28. Field-evolved resistance by western corn rootworm to Cry34/35Ab1 and other Bacillus thuringiensis traits in transgenic maize. Gassmann AJ; Shrestha RB; Kropf AL; St Clair CR; Brenizer BD Pest Manag Sci; 2020 Jan; 76(1):268-276. PubMed ID: 31207042 [TBL] [Abstract][Full Text] [Related]
29. Effects of entomopathogenic nematodes on evolution of pink bollworm resistance to Bacillus thuringiensis toxin Cry1Ac. Gassmann AJ; Hannon ER; Sisterson MS; Stock SP; Carrière Y; Tabashnik BE J Econ Entomol; 2012 Jun; 105(3):994-1005. PubMed ID: 22812141 [TBL] [Abstract][Full Text] [Related]
31. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Gould F Annu Rev Entomol; 1998; 43():701-26. PubMed ID: 15012402 [TBL] [Abstract][Full Text] [Related]
33. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn. Dively GP; Venugopal PD; Finkenbinder C PLoS One; 2016; 11(12):e0169115. PubMed ID: 28036388 [TBL] [Abstract][Full Text] [Related]
34. Effects of pink bollworm resistance to Bacillus thuringiensis on phenoloxidase activity and susceptibility to entomopathogenic nematodes. Gassmann AJ; Fabrick JA; Sisterson MS; Hannon ER; Stock SP; Carrière Y; Tabashnik BE J Econ Entomol; 2009 Jun; 102(3):1224-32. PubMed ID: 19610442 [TBL] [Abstract][Full Text] [Related]
35. The evolution of resistance to two-toxin pyramid transgenic crops. Ives AR; Glaum PR; Ziebarth NL; Andow DA Ecol Appl; 2011 Mar; 21(2):503-15. PubMed ID: 21563580 [TBL] [Abstract][Full Text] [Related]
36. The progress in insect cross-resistance among Bacillus thuringiensis toxins. Wei J; Zhang Y; An S Arch Insect Biochem Physiol; 2019 Nov; 102(3):e21547. PubMed ID: 30864250 [TBL] [Abstract][Full Text] [Related]
37. Surge in insect resistance to transgenic crops and prospects for sustainability. Tabashnik BE; Carrière Y Nat Biotechnol; 2017 Oct; 35(10):926-935. PubMed ID: 29020006 [TBL] [Abstract][Full Text] [Related]
38. Spatio-Temporal Variation in Landscape Composition May Speed Resistance Evolution of Pests to Bt Crops. Ives AR; Paull C; Hulthen A; Downes S; Andow DA; Haygood R; Zalucki MP; Schellhorn NA PLoS One; 2017; 12(1):e0169167. PubMed ID: 28046073 [TBL] [Abstract][Full Text] [Related]
39. Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Betz FS; Hammond BG; Fuchs RL Regul Toxicol Pharmacol; 2000 Oct; 32(2):156-73. PubMed ID: 11067772 [TBL] [Abstract][Full Text] [Related]
40. Impact of violated high-dose refuge assumptions on evolution of Bt resistance. Campagne P; Smouse PE; Pasquet R; Silvain JF; Le Ru B; Van den Berg J Evol Appl; 2016 Apr; 9(4):596-607. PubMed ID: 27099624 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]