BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

704 related articles for article (PubMed ID: 25568121)

  • 1. Altered sensory experience exacerbates stable dendritic spine and synapse loss in a mouse model of Huntington's disease.
    Murmu RP; Li W; Szepesi Z; Li JY
    J Neurosci; 2015 Jan; 35(1):287-98. PubMed ID: 25568121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dendritic spine instability leads to progressive neocortical spine loss in a mouse model of Huntington's disease.
    Murmu RP; Li W; Holtmaat A; Li JY
    J Neurosci; 2013 Aug; 33(32):12997-3009. PubMed ID: 23926255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington's disease.
    Nithianantharajah J; Hannan AJ
    Neuroscience; 2013 Oct; 251():66-74. PubMed ID: 22633949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Visualisation of Abnormal Dendritic Spine Morphology in the Hippocampus of the R6/2 Transgenic Mouse Model of Huntington's Disease.
    Bulley SJ; Drew CJ; Morton AJ
    J Huntingtons Dis; 2012; 1(2):267-73. PubMed ID: 25063335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling brain reserve: experience-dependent neuronal plasticity in healthy and Huntington's disease transgenic mice.
    Nithianantharajah J; Barkus C; Vijiaratnam N; Clement O; Hannan AJ
    Am J Geriatr Psychiatry; 2009 Mar; 17(3):196-209. PubMed ID: 19454847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington's disease transgenic mice.
    Spires TL; Grote HE; Garry S; Cordery PM; Van Dellen A; Blakemore C; Hannan AJ
    Eur J Neurosci; 2004 May; 19(10):2799-807. PubMed ID: 15147313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microglial physiological properties and interactions with synapses are altered at presymptomatic stages in a mouse model of Huntington's disease pathology.
    Savage JC; St-Pierre MK; Carrier M; El Hajj H; Novak SW; Sanchez MG; Cicchetti F; Tremblay MÈ
    J Neuroinflammation; 2020 Apr; 17(1):98. PubMed ID: 32241286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Component Structural Plasticity Mediated by αCaMKII Autophosphorylation on Basal Dendrites of Cortical Layer 2/3 Neurones.
    Seaton G; Hodges G; de Haan A; Grewal A; Pandey A; Kasai H; Fox K
    J Neurosci; 2020 Mar; 40(11):2228-2245. PubMed ID: 32001612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. No symphony without bassoon and piccolo: changes in synaptic active zone proteins in Huntington's disease.
    Huang TT; Smith R; Bacos K; Song DY; Faull RM; Waldvogel HJ; Li JY
    Acta Neuropathol Commun; 2020 Jun; 8(1):77. PubMed ID: 32493491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington's disease mutation.
    Murphy KP; Carter RJ; Lione LA; Mangiarini L; Mahal A; Bates GP; Dunnett SB; Morton AJ
    J Neurosci; 2000 Jul; 20(13):5115-23. PubMed ID: 10864968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington's disease by preventing p75NTR up-regulation and astrocyte-mediated inflammation.
    Miguez A; García-Díaz Barriga G; Brito V; Straccia M; Giralt A; Ginés S; Canals JM; Alberch J
    Hum Mol Genet; 2015 Sep; 24(17):4958-70. PubMed ID: 26063761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maternal Loss of Ube3a Impairs Experience-Driven Dendritic Spine Maintenance in the Developing Visual Cortex.
    Kim H; Kunz PA; Mooney R; Philpot BD; Smith SL
    J Neurosci; 2016 Apr; 36(17):4888-94. PubMed ID: 27122043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prostaglandin E2 EP2 activation reduces memory decline in R6/1 mouse model of Huntington's disease by the induction of BDNF-dependent synaptic plasticity.
    Anglada-Huguet M; Vidal-Sancho L; Giralt A; García-Díaz Barriga G; Xifró X; Alberch J
    Neurobiol Dis; 2016 Nov; 95():22-34. PubMed ID: 26369879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington's Disease Mouse Model.
    Wu J; Ryskamp DA; Liang X; Egorova P; Zakharova O; Hung G; Bezprozvanny I
    J Neurosci; 2016 Jan; 36(1):125-41. PubMed ID: 26740655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early development of aberrant synaptic plasticity in a mouse model of Huntington's disease.
    Milnerwood AJ; Cummings DM; Dallérac GM; Brown JY; Vatsavayai SC; Hirst MC; Rezaie P; Murphy KP
    Hum Mol Genet; 2006 May; 15(10):1690-703. PubMed ID: 16600988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyramidal Neurons in Different Cortical Layers Exhibit Distinct Dynamics and Plasticity of Apical Dendritic Spines.
    Tjia M; Yu X; Jammu LS; Lu J; Zuo Y
    Front Neural Circuits; 2017; 11():43. PubMed ID: 28674487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired learning-dependent cortical plasticity in Huntington's disease transgenic mice.
    Cybulska-Klosowicz A; Mazarakis NK; Van Dellen A; Blakemore C; Hannan AJ; Kossut M
    Neurobiol Dis; 2004 Dec; 17(3):427-34. PubMed ID: 15571978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deficits in experience-dependent cortical plasticity and sensory-discrimination learning in presymptomatic Huntington's disease mice.
    Mazarakis NK; Cybulska-Klosowicz A; Grote H; Pang T; Van Dellen A; Kossut M; Blakemore C; Hannan AJ
    J Neurosci; 2005 Mar; 25(12):3059-66. PubMed ID: 15788762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aberrant cortical synaptic plasticity and dopaminergic dysfunction in a mouse model of Huntington's disease.
    Cummings DM; Milnerwood AJ; Dallérac GM; Waights V; Brown JY; Vatsavayai SC; Hirst MC; Murphy KP
    Hum Mol Genet; 2006 Oct; 15(19):2856-68. PubMed ID: 16905556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CREB Regulates Experience-Dependent Spine Formation and Enlargement in Mouse Barrel Cortex.
    Pignataro A; Borreca A; Ammassari-Teule M; Middei S
    Neural Plast; 2015; 2015():651469. PubMed ID: 26075101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.