BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 25568279)

  • 21. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.
    Zhou H; Yang Y; Shen HB
    Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomic analysis and prediction of human phosphorylation sites in subcellular level reveal subcellular specificity.
    Chen X; Shi SP; Suo SB; Xu HD; Qiu JD
    Bioinformatics; 2015 Jan; 31(2):194-200. PubMed ID: 25236462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences.
    Chauhan JS; Rao A; Raghava GP
    PLoS One; 2013; 8(6):e67008. PubMed ID: 23840574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive assessment and performance improvement of effector protein predictors for bacterial secretion systems III, IV and VI.
    An Y; Wang J; Li C; Leier A; Marquez-Lago T; Wilksch J; Zhang Y; Webb GI; Song J; Lithgow T
    Brief Bioinform; 2018 Jan; 19(1):148-161. PubMed ID: 27777222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DeepNGlyPred: A Deep Neural Network-Based Approach for Human N-Linked Glycosylation Site Prediction.
    Pakhrin SC; Aoki-Kinoshita KF; Caragea D; Kc DB
    Molecules; 2021 Dec; 26(23):. PubMed ID: 34885895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition.
    Höglund A; Dönnes P; Blum T; Adolph HW; Kohlbacher O
    Bioinformatics; 2006 May; 22(10):1158-65. PubMed ID: 16428265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sites using neural networks.
    Gupta R; Jung E; Gooley AA; Williams KL; Brunak S; Hansen J
    Glycobiology; 1999 Oct; 9(10):1009-22. PubMed ID: 10521537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SuccFind: a novel succinylation sites online prediction tool via enhanced characteristic strategy.
    Xu HD; Shi SP; Wen PP; Qiu JD
    Bioinformatics; 2015 Dec; 31(23):3748-50. PubMed ID: 26261224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational prediction of N-linked glycosylation incorporating structural properties and patterns.
    Chuang GY; Boyington JC; Joyce MG; Zhu J; Nabel GJ; Kwong PD; Georgiev I
    Bioinformatics; 2012 Sep; 28(17):2249-55. PubMed ID: 22782545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ResNetKhib: a novel cell type-specific tool for predicting lysine 2-hydroxyisobutylation sites via transfer learning.
    Jia X; Zhao P; Li F; Qin Z; Ren H; Li J; Miao C; Zhao Q; Akutsu T; Dou G; Chen Z; Song J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36880172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. iPTM-mLys: identifying multiple lysine PTM sites and their different types.
    Qiu WR; Sun BQ; Xiao X; Xu ZC; Chou KC
    Bioinformatics; 2016 Oct; 32(20):3116-3123. PubMed ID: 27334473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy.
    Song J; Li F; Leier A; Marquez-Lago TT; Akutsu T; Haffari G; Chou KC; Webb GI; Pike RN; Hancock J
    Bioinformatics; 2018 Feb; 34(4):684-687. PubMed ID: 29069280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting O-glycosylation sites in mammalian proteins by using SVMs.
    Li S; Liu B; Zeng R; Cai Y; Li Y
    Comput Biol Chem; 2006 Jun; 30(3):203-8. PubMed ID: 16731044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards more accurate prediction of ubiquitination sites: a comprehensive review of current methods, tools and features.
    Chen Z; Zhou Y; Zhang Z; Song J
    Brief Bioinform; 2015 Jul; 16(4):640-57. PubMed ID: 25212598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of protein-RNA binding sites by a random forest method with combined features.
    Liu ZP; Wu LY; Wang Y; Zhang XS; Chen L
    Bioinformatics; 2010 Jul; 26(13):1616-22. PubMed ID: 20483814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CarSPred: a computational tool for predicting carbonylation sites of human proteins.
    Lv H; Han J; Liu J; Zheng J; Liu R; Zhong D
    PLoS One; 2014; 9(10):e111478. PubMed ID: 25347395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accurate in silico identification of species-specific acetylation sites by integrating protein sequence-derived and functional features.
    Li Y; Wang M; Wang H; Tan H; Zhang Z; Webb GI; Song J
    Sci Rep; 2014 Jul; 4():5765. PubMed ID: 25042424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.