BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 25568282)

  • 1. A haplotype-based framework for group-wise transmission/disequilibrium tests for rare variant association analysis.
    Chen R; Wei Q; Zhan X; Zhong X; Sutcliffe JS; Cox NJ; Cook EH; Li C; Chen W; Li B
    Bioinformatics; 2015 May; 31(9):1452-9. PubMed ID: 25568282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rare-variant extensions of the transmission disequilibrium test: application to autism exome sequence data.
    He Z; O'Roak BJ; Smith JD; Wang G; Hooker S; Santos-Cortez RL; Li B; Kan M; Krumm N; Nickerson DA; Shendure J; Eichler EE; Leal SM
    Am J Hum Genet; 2014 Jan; 94(1):33-46. PubMed ID: 24360806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The power comparison of the haplotype-based collapsing tests and the variant-based collapsing tests for detecting rare variants in pedigrees.
    Guo W; Shugart YY
    BMC Genomics; 2014 Jul; 15(1):632. PubMed ID: 25070353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene Mapping in Admixed Families: A Cautionary Note on the Interpretation of the Transmission Disequilibrium Test and a Possible Solution.
    Wang X; Xiao R; Zhu X; Li M
    Hum Hered; 2016; 81(2):106-116. PubMed ID: 28076865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GENOME-WIDE ASSOCIATION MAPPING AND RARE ALLELES: FROM POPULATION GENOMICS TO PERSONALIZED MEDICINE - Session Introduction.
    DE LA Vega FM; Bustamante CD; Leal SM
    Pac Symp Biocomput; 2011; ():74-5. PubMed ID: 21121034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Rare-Variant Generalized Disequilibrium Test for Association Analysis of Nuclear and Extended Pedigrees with Application to Alzheimer Disease WGS Data.
    He Z; Zhang D; Renton AE; Li B; Zhao L; Wang GT; Goate AM; Mayeux R; Leal SM
    Am J Hum Genet; 2017 Feb; 100(2):193-204. PubMed ID: 28065470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haplotype sharing transmission/disequilibrium tests that allow for genotyping errors.
    Sha Q; Dong J; Jiang R; Chen HS; Zhang S
    Genet Epidemiol; 2005 May; 28(4):341-51. PubMed ID: 15662724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for association analysis and meta-analysis of rare variants in families.
    Feng S; Pistis G; Zhang H; Zawistowski M; Mulas A; Zoledziewska M; Holmen OL; Busonero F; Sanna S; Hveem K; Willer C; Cucca F; Liu DJ; Abecasis GR
    Genet Epidemiol; 2015 May; 39(4):227-38. PubMed ID: 25740221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging blood serotonin as an endophenotype to identify de novo and rare variants involved in autism.
    Chen R; Davis LK; Guter S; Wei Q; Jacob S; Potter MH; Cox NJ; Cook EH; Sutcliffe JS; Li B
    Mol Autism; 2017; 8():14. PubMed ID: 28344757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconsidering association testing methods using single-variant test statistics as alternatives to pooling tests for sequence data with rare variants.
    Kinnamon DD; Hershberger RE; Martin ER
    PLoS One; 2012; 7(2):e30238. PubMed ID: 22363423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Zoom-Focus algorithm (ZFA) to locate the optimal testing region for rare variant association tests.
    Wang MH; Weng H; Sun R; Lee J; Wu WKK; Chong KC; Zee BC
    Bioinformatics; 2017 Aug; 33(15):2330-2336. PubMed ID: 28334355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rare variant association test in family-based sequencing studies.
    Wang X; Zhang Z; Morris N; Cai T; Lee S; Wang C; Yu TW; Walsh CA; Lin X
    Brief Bioinform; 2017 Nov; 18(6):954-961. PubMed ID: 27677958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian framework for de novo mutation calling in parents-offspring trios.
    Wei Q; Zhan X; Zhong X; Liu Y; Han Y; Chen W; Li B
    Bioinformatics; 2015 May; 31(9):1375-81. PubMed ID: 25535243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing the effect of rare compound-heterozygous and recessive mutations in case--parent sequencing studies.
    Jiang Y; McCarthy JM; Allen AS
    Genet Epidemiol; 2015 Mar; 39(3):166-72. PubMed ID: 25631493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Region-based association tests for sequencing data on survival traits.
    Chien LC; Bowden DW; Chiu YF
    Genet Epidemiol; 2017 Sep; 41(6):511-522. PubMed ID: 28580640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RAINBOW: Haplotype-based genome-wide association study using a novel SNP-set method.
    Hamazaki K; Iwata H
    PLoS Comput Biol; 2020 Feb; 16(2):e1007663. PubMed ID: 32059004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of popular TDT-generalizations for family-based association analysis.
    Hecker J; Laird N; Lange C
    Genet Epidemiol; 2019 Apr; 43(3):300-317. PubMed ID: 30609057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A power set-based statistical selection procedure to locate susceptible rare variants associated with complex traits with sequencing data.
    Sun H; Wang S
    Bioinformatics; 2014 Aug; 30(16):2317-23. PubMed ID: 24755303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weighted Transmission Disequilibrium Test for Family Trio Association Design.
    Fang H; Yang Y; Chen L
    Hum Hered; 2018; 83(4):196-209. PubMed ID: 30865952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TDT-HET: a new transmission disequilibrium test that incorporates locus heterogeneity into the analysis of family-based association data.
    Londono D; Buyske S; Finch SJ; Sharma S; Wise CA; Gordon D
    BMC Bioinformatics; 2012 Jan; 13():13. PubMed ID: 22264315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.