These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25568617)

  • 1. The rheology of three-phase suspensions at low bubble capillary number.
    Truby JM; Mueller SP; Llewellin EW; Mader HM
    Proc Math Phys Eng Sci; 2015 Jan; 471(2173):20140557. PubMed ID: 25568617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheology of three-phase suspensions determined via dam-break experiments.
    Birnbaum J; Lev E; Llewellin EW
    Proc Math Phys Eng Sci; 2021 Oct; 477(2254):20210394. PubMed ID: 35601084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.
    Danov KD; Georgiev MT; Kralchevsky PA; Radulova GM; Gurkov TD; Stoyanov SD; Pelan EG
    Adv Colloid Interface Sci; 2018 Jan; 251():80-96. PubMed ID: 29174116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation of concentrated fluid-particle suspension flows in axisymmetric geometries.
    Hofer M; Perktold K
    Biorheology; 1997; 34(4-5):261-79. PubMed ID: 9578803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arresting dissolution by interfacial rheology design.
    Beltramo PJ; Gupta M; Alicke A; Liascukiene I; Gunes DZ; Baroud CN; Vermant J
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10373-10378. PubMed ID: 28893993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Puzzling Bubble Rise Speed Increase in Dense Granular Suspensions.
    Madec C; Collin B; John Soundar Jerome J; Joubaud S
    Phys Rev Lett; 2020 Aug; 125(7):078004. PubMed ID: 32857566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscosity of a concentrated suspension of rigid monosized particles.
    Brouwers HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051402. PubMed ID: 20866225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillary interactions between particles bound to interfaces, liquid films and biomembranes.
    Kralchevsky PA; Nagayama K
    Adv Colloid Interface Sci; 2000 Mar; 85(2-3):145-92. PubMed ID: 10768480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical bubble size distributions in coarsening wet liquid foams.
    Galvani N; Pasquet M; Mukherjee A; Requier A; Cohen-Addad S; Pitois O; Höhler R; Rio E; Salonen A; Durian DJ; Langevin D
    Proc Natl Acad Sci U S A; 2023 Sep; 120(38):e2306551120. PubMed ID: 37708201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheology of particle/water/oil three-phase dispersions: Electrostatic vs. capillary bridge forces.
    Georgiev MT; Danov KD; Kralchevsky PA; Gurkov TD; Krusteva DP; Arnaudov LN; Stoyanov SD; Pelan EG
    J Colloid Interface Sci; 2018 Mar; 513():515-526. PubMed ID: 29179092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Armoring confined bubbles in the flow of colloidal suspensions.
    Yu YE; Khodaparast S; Stone HA
    Soft Matter; 2017 Apr; 13(15):2857-2865. PubMed ID: 28352886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rise of bubbles in shear thinning viscoelastic fluids.
    Chen Q; Restagno F; Langevin D; Salonen A
    J Colloid Interface Sci; 2022 Jun; 616():360-368. PubMed ID: 35220184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coalescence of two growing bubbles in a Hele-Shaw cell.
    Ohashi M; Toramaru A; Namiki A
    Sci Rep; 2022 Jan; 12(1):1270. PubMed ID: 35075182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Film depth and concentration banding in free-surface Couette flow of a suspension.
    Timberlake BD; Morris JF
    Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):895-910. PubMed ID: 12804220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Newtonian rheology in suspension cell cultures significantly impacts bioreactor shear stress quantification.
    Wyma A; Martin-Alarcon L; Walsh T; Schmidt TA; Gates ID; Kallos MS
    Biotechnol Bioeng; 2018 Aug; 115(8):2101-2113. PubMed ID: 29704461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equation of state for He bubbles in W and model of He bubble growth and bursting near W{100} surfaces derived from molecular dynamics simulations.
    Setyawan W; Dasgupta D; Blondel S; Nandipati G; Hammond KD; Maroudas D; Wirth BD
    Sci Rep; 2023 Jun; 13(1):9601. PubMed ID: 37311783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extensional rheology of active suspensions.
    Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056307. PubMed ID: 20866322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of bubble induced shear in membrane bioreactors: effects of mixed liquor rheology and membrane configuration.
    Liu X; Wang Y; Waite TD; Leslie G
    Water Res; 2015 May; 75():131-45. PubMed ID: 25768986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic probing of the particle concentration in turbulent granular suspensions in air.
    van den Wildenberg S; Jia X; Roche O
    Sci Rep; 2020 Oct; 10(1):16544. PubMed ID: 33024148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.