BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 25568895)

  • 21. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages.
    Hoshiba T; Tanaka M
    Biochem Biophys Res Commun; 2013 Sep; 439(2):291-6. PubMed ID: 23978418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [10]-Gingerol Reverts Malignant Phenotype of Breast Cancer Cells in 3D Culture.
    Fuzer AM; Lee SY; Mott JD; Cominetti MR
    J Cell Biochem; 2017 Sep; 118(9):2693-2699. PubMed ID: 28112417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A laminin-rich basement membrane matrix influences estrogen receptor beta expression and morphology of MDA-MB-231 breast cancer cells.
    Neubauer H; Ruoff A; Paessler N; Solomayer E; Wallwiener D; Fehm T
    Oncol Rep; 2009 Feb; 21(2):475-81. PubMed ID: 19148525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vascular endothelial growth inhibitor affects the invasion, apoptosis and vascularisation in breast cancer cell line MDA-MB-231.
    Gao Y; Ge Z; Zhang Z; Bai Z; Ma X; Wang Y
    Chin Med J (Engl); 2014; 127(10):1947-53. PubMed ID: 24824261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Micropatterns of Matrigel for three-dimensional epithelial cultures.
    Sodunke TR; Turner KK; Caldwell SA; McBride KW; Reginato MJ; Noh HM
    Biomaterials; 2007 Sep; 28(27):4006-16. PubMed ID: 17574663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments.
    Sasser AK; Mundy BL; Smith KM; Studebaker AW; Axel AE; Haidet AM; Fernandez SA; Hall BM
    Cancer Lett; 2007 Sep; 254(2):255-64. PubMed ID: 17467167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anticancer SAR models for MCF-7 and MDA-MB-231 breast cell lines.
    Qamar S; Carrasquer CA; Cunningham SL; Cunningham AR
    Anticancer Res; 2011 Oct; 31(10):3247-52. PubMed ID: 21965732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of primary breast carcinomas grown in three-dimensional cultures.
    Becker JL; Blanchard DK
    J Surg Res; 2007 Oct; 142(2):256-62. PubMed ID: 17727885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Primary breast myoepithelial cells exert an invasion-suppressor effect on breast cancer cells via paracrine down-regulation of MMP expression in fibroblasts and tumour cells.
    Jones JL; Shaw JA; Pringle JH; Walker RA
    J Pathol; 2003 Dec; 201(4):562-72. PubMed ID: 14648659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic manipulation of stromal cell-derived factor-1 attests the pivotal role of the autocrine SDF-1-CXCR4 pathway in the aggressiveness of breast cancer cells.
    Kang H; Mansel RE; Jiang WG
    Int J Oncol; 2005 May; 26(5):1429-34. PubMed ID: 15809737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells.
    Basu GD; Pathangey LB; Tinder TL; Gendler SJ; Mukherjee P
    Breast Cancer Res; 2005; 7(4):R422-35. PubMed ID: 15987447
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The New Synthetic Serum-Free Medium OptiPASS Promotes High Proliferation and Drug Efficacy Prediction on Spheroids from MDA-MB-231 and SUM1315 Triple-Negative Breast Cancer Cell Lines.
    Dubois C; Daumar P; Aubel C; Gauthier J; Vidalinc B; Mounetou E; Penault-Llorca F; Bamdad M
    J Clin Med; 2019 Mar; 8(3):. PubMed ID: 30901969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 2D protrusion but not motility predicts growth factor-induced cancer cell migration in 3D collagen.
    Meyer AS; Hughes-Alford SK; Kay JE; Castillo A; Wells A; Gertler FB; Lauffenburger DA
    J Cell Biol; 2012 Jun; 197(6):721-9. PubMed ID: 22665521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A 3D in situ cell counter reveals that breast tumor cell (MDA-MB-231) proliferation rate is reduced by the collagen matrix density.
    Kim BJ; Zhao S; Bunaciu RP; Yen A; Wu M
    Biotechnol Prog; 2015; 31(4):990-996. PubMed ID: 25683564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The culture conditions and outputs from breast cancer cell line in vitro experiments.
    Ravi M; Sneka MK; Joshipura A
    Exp Cell Res; 2019 Oct; 383(2):111548. PubMed ID: 31398351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. HTS-FTIR spectroscopy allows the classification of polyphenols according to their differential effects on the MDA-MB-231 breast cancer cell line.
    Mignolet A; Mathieu V; Goormaghtigh E
    Analyst; 2017 Apr; 142(8):1244-1257. PubMed ID: 27924981
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential reprogramming of breast cancer subtypes in 3D cultures and implications for sensitivity to targeted therapy.
    Koedoot E; Wolters L; Smid M; Stoilov P; Burger GA; Herpers B; Yan K; Price LS; Martens JWM; Le Dévédec SE; van de Water B
    Sci Rep; 2021 Mar; 11(1):7259. PubMed ID: 33790333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell Phase Identification in a Three-Dimensional Engineered Tumor Model by Infrared Spectroscopic Imaging.
    Hsieh PH; Phal Y; Prasanth KV; Bhargava R
    Anal Chem; 2023 Feb; 95(6):3349-3357. PubMed ID: 36574385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytotoxic responses of carnosic acid and doxorubicin on breast cancer cells in butterfly-shaped microchips in comparison to 2D and 3D culture.
    Yildiz-Ozturk E; Gulce-Iz S; Anil M; Yesil-Celiktas O
    Cytotechnology; 2017 Apr; 69(2):337-347. PubMed ID: 28191587
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mid-Infrared Imaging Is Able to Characterize and Separate Cancer Cell Lines.
    Kontsek E; Pesti A; Björnstedt M; Üveges T; Szabó E; Garay T; Gordon P; Gergely S; Kiss A
    Pathol Oncol Res; 2020 Oct; 26(4):2401-2407. PubMed ID: 32556889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.