These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25568954)

  • 1. Mapping the Pareto optimal design space for a functionally deimmunized biotherapeutic candidate.
    Salvat RS; Parker AS; Choi Y; Bailey-Kellogg C; Griswold KE
    PLoS Comput Biol; 2015 Jan; 11(1):e1003988. PubMed ID: 25568954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EpiSweep: Computationally Driven Reengineering of Therapeutic Proteins to Reduce Immunogenicity While Maintaining Function.
    Choi Y; Verma D; Griswold KE; Bailey-Kellogg C
    Methods Mol Biol; 2017; 1529():375-398. PubMed ID: 27914063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computationally driven deletion of broadly distributed T cell epitopes in a biotherapeutic candidate.
    Salvat RS; Parker AS; Guilliams A; Choi Y; Bailey-Kellogg C; Griswold KE
    Cell Mol Life Sci; 2014 Dec; 71(24):4869-80. PubMed ID: 24880662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-guided deimmunization of therapeutic proteins.
    Parker AS; Choi Y; Griswold KE; Bailey-Kellogg C
    J Comput Biol; 2013 Feb; 20(2):152-65. PubMed ID: 23384000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein deimmunization via structure-based design enables efficient epitope deletion at high mutational loads.
    Salvat RS; Choi Y; Bishop A; Bailey-Kellogg C; Griswold KE
    Biotechnol Bioeng; 2015 Jul; 112(7):1306-18. PubMed ID: 25655032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of therapeutic proteins to delete T-cell epitopes while maintaining beneficial residue interactions.
    Parker AS; Griswold KE; Bailey-Kellogg C
    J Bioinform Comput Biol; 2011 Apr; 9(2):207-29. PubMed ID: 21523929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and analysis of immune-evading enzymes for ADEPT therapy.
    Osipovitch DC; Parker AS; Makokha CD; Desrosiers J; Kett WC; Moise L; Bailey-Kellogg C; Griswold KE
    Protein Eng Des Sel; 2012 Oct; 25(10):613-23. PubMed ID: 22898588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization algorithms for functional deimmunization of therapeutic proteins.
    Parker AS; Zheng W; Griswold KE; Bailey-Kellogg C
    BMC Bioinformatics; 2010 Apr; 11():180. PubMed ID: 20380721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population-specific design of de-immunized protein biotherapeutics.
    Schubert B; Schärfe C; Dönnes P; Hopf T; Marks D; Kohlbacher O
    PLoS Comput Biol; 2018 Mar; 14(3):e1005983. PubMed ID: 29499035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Deimmunization of Interferon Beta-1b by Identifying and Silencing Human T Cells Epitopes.
    Moradi Hasan-Abad A; Adabi E; Sadroddiny E; Khorramizadeh MR; Mazlomi MA; Mehravar S; Kardar GA
    Iran J Allergy Asthma Immunol; 2019 Aug; 18(4):427-440. PubMed ID: 31522451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computationally optimized deimmunization libraries yield highly mutated enzymes with low immunogenicity and enhanced activity.
    Salvat RS; Verma D; Parker AS; Kirsch JR; Brooks SA; Bailey-Kellogg C; Griswold KE
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):E5085-E5093. PubMed ID: 28607051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depletion of T cell epitopes in lysostaphin mitigates anti-drug antibody response and enhances antibacterial efficacy in vivo.
    Zhao H; Verma D; Li W; Choi Y; Ndong C; Fiering SN; Bailey-Kellogg C; Griswold KE
    Chem Biol; 2015 May; 22(5):629-39. PubMed ID: 26000749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MHCEpitopeEnergy, a Flexible Rosetta-Based Biotherapeutic Deimmunization Platform.
    Yachnin BJ; Mulligan VK; Khare SD; Bailey-Kellogg C
    J Chem Inf Model; 2021 May; 61(5):2368-2382. PubMed ID: 33900750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and engineering of deimmunized biotherapeutics.
    Griswold KE; Bailey-Kellogg C
    Curr Opin Struct Biol; 2016 Aug; 39():79-88. PubMed ID: 27322891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A divide-and-conquer approach to determine the Pareto frontier for optimization of protein engineering experiments.
    He L; Friedman AM; Bailey-Kellogg C
    Proteins; 2012 Mar; 80(3):790-806. PubMed ID: 22180081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical validation of the "in silico" prediction of immunogenicity of a human recombinant therapeutic protein.
    Koren E; De Groot AS; Jawa V; Beck KD; Boone T; Rivera D; Li L; Mytych D; Koscec M; Weeraratne D; Swanson S; Martin W
    Clin Immunol; 2007 Jul; 124(1):26-32. PubMed ID: 17490912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate prediction of immunogenic T-cell epitopes from epitope sequences using the genetic algorithm-based ensemble learning.
    Zhang W; Niu Y; Zou H; Luo L; Liu Q; Wu W
    PLoS One; 2015; 10(5):e0128194. PubMed ID: 26020952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico analysis of MHC-I restricted epitopes of Chikungunya virus proteins: Implication in understanding anti-CHIKV CD8(+) T cell response and advancement of epitope based immunotherapy for CHIKV infection.
    Pratheek BM; Suryawanshi AR; Chattopadhyay S; Chattopadhyay S
    Infect Genet Evol; 2015 Apr; 31():118-26. PubMed ID: 25643869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based redesign of proteins for minimal T-cell epitope content.
    Choi Y; Griswold KE; Bailey-Kellogg C
    J Comput Chem; 2013 Apr; 34(10):879-91. PubMed ID: 23299435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.