These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 25569112)
1. Atmospheric chemistry. Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor. Chao W; Hsieh JT; Chang CH; Lin JJ Science; 2015 Feb; 347(6223):751-4. PubMed ID: 25569112 [TBL] [Abstract][Full Text] [Related]
2. Strong Negative Temperature Dependence of the Simplest Criegee Intermediate CH2OO Reaction with Water Dimer. Smith MC; Chang CH; Chao W; Lin LC; Takahashi K; Boering KA; Lin JJ J Phys Chem Lett; 2015 Jul; 6(14):2708-13. PubMed ID: 26266852 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2. Huang HL; Chao W; Lin JJ Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10857-62. PubMed ID: 26283390 [TBL] [Abstract][Full Text] [Related]
4. Infrared absorption spectrum of the simplest Criegee intermediate CH2OO. Su YT; Huang YH; Witek HA; Lee YP Science; 2013 Apr; 340(6129):174-6. PubMed ID: 23580523 [TBL] [Abstract][Full Text] [Related]
5. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates. Lee YP J Chem Phys; 2015 Jul; 143(2):020901. PubMed ID: 26178082 [TBL] [Abstract][Full Text] [Related]
6. Extremely rapid self-reaction of the simplest Criegee intermediate CH2OO and its implications in atmospheric chemistry. Su YT; Lin HY; Putikam R; Matsui H; Lin MC; Lee YP Nat Chem; 2014 Jun; 6(6):477-83. PubMed ID: 24848232 [TBL] [Abstract][Full Text] [Related]
7. Direct kinetic measurements of reactions between the simplest Criegee intermediate CH2OO and alkenes. Buras ZJ; Elsamra RM; Jalan A; Middaugh JE; Green WH J Phys Chem A; 2014 Mar; 118(11):1997-2006. PubMed ID: 24559303 [TBL] [Abstract][Full Text] [Related]
8. Direct evidence for a substantive reaction between the Criegee intermediate, CH2OO, and the water vapour dimer. Lewis TR; Blitz MA; Heard DE; Seakins PW Phys Chem Chem Phys; 2015 Feb; 17(7):4859-63. PubMed ID: 25600757 [TBL] [Abstract][Full Text] [Related]
9. Detailed mechanism of the CH₂I + O₂ reaction: yield and self-reaction of the simplest Criegee intermediate CH₂OO. Ting WL; Chang CH; Lee YF; Matsui H; Lee YP; Lin JJ J Chem Phys; 2014 Sep; 141(10):104308. PubMed ID: 25217917 [TBL] [Abstract][Full Text] [Related]
10. A kinetic study of the CH2OO Criegee intermediate self-reaction, reaction with SO2 and unimolecular reaction using cavity ring-down spectroscopy. Chhantyal-Pun R; Davey A; Shallcross DE; Percival CJ; Orr-Ewing AJ Phys Chem Chem Phys; 2015 Feb; 17(5):3617-26. PubMed ID: 25553776 [TBL] [Abstract][Full Text] [Related]
11. Structure-dependent reactivity of Criegee intermediates studied with spectroscopic methods. Jr-Min Lin J; Chao W Chem Soc Rev; 2017 Dec; 46(24):7483-7497. PubMed ID: 28840926 [TBL] [Abstract][Full Text] [Related]
12. Direct Determination of the Simplest Criegee Intermediate (CH2OO) Self Reaction Rate. Buras ZJ; Elsamra RM; Green WH J Phys Chem Lett; 2014 Jul; 5(13):2224-8. PubMed ID: 26279538 [TBL] [Abstract][Full Text] [Related]
13. Impact of the water dimer on the atmospheric reactivity of carbonyl oxides. Anglada JM; Solé A Phys Chem Chem Phys; 2016 Jun; 18(26):17698-712. PubMed ID: 27308802 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous infrared detection of the ICH2OO radical and Criegee intermediate CH2OO: the pressure dependence of the yield of CH2OO in the reaction CH2I + O2. Huang YH; Chen LW; Lee YP J Phys Chem Lett; 2015 Nov; 6(22):4610-5. PubMed ID: 26539815 [TBL] [Abstract][Full Text] [Related]
15. Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO. Taatjes CA; Welz O; Eskola AJ; Savee JD; Scheer AM; Shallcross DE; Rotavera B; Lee EP; Dyke JM; Mok DK; Osborn DL; Percival CJ Science; 2013 Apr; 340(6129):177-80. PubMed ID: 23580524 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions. Berndt T; Kaethner R; Voigtländer J; Stratmann F; Pfeifle M; Reichle P; Sipilä M; Kulmala M; Olzmann M Phys Chem Chem Phys; 2015 Aug; 17(30):19862-73. PubMed ID: 26159709 [TBL] [Abstract][Full Text] [Related]
17. Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene. Nguyen TB; Tyndall GS; Crounse JD; Teng AP; Bates KH; Schwantes RH; Coggon MM; Zhang L; Feiner P; Milller DO; Skog KM; Rivera-Rios JC; Dorris M; Olson KF; Koss A; Wild RJ; Brown SS; Goldstein AH; de Gouw JA; Brune WH; Keutsch FN; Seinfeld JH; Wennberg PO Phys Chem Chem Phys; 2016 Apr; 18(15):10241-54. PubMed ID: 27021601 [TBL] [Abstract][Full Text] [Related]
18. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone. Taatjes CA; Welz O; Eskola AJ; Savee JD; Osborn DL; Lee EP; Dyke JM; Mok DW; Shallcross DE; Percival CJ Phys Chem Chem Phys; 2012 Aug; 14(30):10391-400. PubMed ID: 22481381 [TBL] [Abstract][Full Text] [Related]
19. Temperature-Dependent Rate Coefficients for the Reaction of CH Smith MC; Chao W; Kumar M; Francisco JS; Takahashi K; Lin JJ J Phys Chem A; 2017 Feb; 121(5):938-945. PubMed ID: 28067517 [TBL] [Abstract][Full Text] [Related]
20. Direct observation of the gas-phase Criegee intermediate (CH2OO). Taatjes CA; Meloni G; Selby TM; Trevitt AJ; Osborn DL; Percival CJ; Shallcross DE J Am Chem Soc; 2008 Sep; 130(36):11883-5. PubMed ID: 18702490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]