These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25569142)

  • 41. Focused-laser-enabled p-n junctions in graphene field-effect transistors.
    Kim YD; Bae MH; Seo JT; Kim YS; Kim H; Lee JH; Ahn JR; Lee SW; Chun SH; Park YD
    ACS Nano; 2013 Jul; 7(7):5850-7. PubMed ID: 23782162
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Si-compatible cleaning process for graphene using low-density inductively coupled plasma.
    Lim YD; Lee DY; Shen TZ; Ra CH; Choi JY; Yoo WJ
    ACS Nano; 2012 May; 6(5):4410-7. PubMed ID: 22515680
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapid-thermal-annealing surface treatment for restoring the intrinsic properties of graphene field-effect transistors.
    Jang CW; Kim JH; Kim JM; Shin DH; Kim S; Choi SH
    Nanotechnology; 2013 Oct; 24(40):405301. PubMed ID: 24029636
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deep-ultraviolet-light-driven reversible doping of WS2 field-effect transistors.
    Iqbal MW; Iqbal MZ; Khan MF; Shehzad MA; Seo Y; Eom J
    Nanoscale; 2015 Jan; 7(2):747-57. PubMed ID: 25429443
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Defect engineering as a versatile route to estimate various scattering mechanisms in monolayer graphene on solid substrates.
    Srivastava PK; Ghosh S
    Nanoscale; 2015 Oct; 7(38):16079-86. PubMed ID: 26372472
    [TBL] [Abstract][Full Text] [Related]  

  • 46. n-Type behavior of graphene supported on Si/SiO(2) substrates.
    Romero HE; Shen N; Joshi P; Gutierrez HR; Tadigadapa SA; Sofo JO; Eklund PC
    ACS Nano; 2008 Oct; 2(10):2037-44. PubMed ID: 19206449
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Partially Fluorinated Graphene: Structural and Electrical Characterization.
    Cheng L; Jandhyala S; Mordi G; Lucero AT; Huang J; Azcatl A; Addou R; Wallace RM; Colombo L; Kim J
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):5002-8. PubMed ID: 26820099
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced sensing response of oxidized graphene formed by UV irradiation in water.
    Mitoma N; Nouchi R; Tanigaki K
    Nanotechnology; 2015 Mar; 26(10):105701. PubMed ID: 25682976
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of electron-transfer chemical modification on the electrical characteristics of graphene.
    Fan XY; Nouchi R; Yin LC; Tanigaki K
    Nanotechnology; 2010 Nov; 21(47):475208. PubMed ID: 21030765
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density.
    Hwang JY; Kuo CC; Chen LC; Chen KH
    Nanotechnology; 2010 Nov; 21(46):465705. PubMed ID: 20972312
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hysteresis of electronic transport in graphene transistors.
    Wang H; Wu Y; Cong C; Shang J; Yu T
    ACS Nano; 2010 Dec; 4(12):7221-8. PubMed ID: 21047068
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancing the electrical properties of a flexible transparent graphene-based field-effect transistor using electropolished copper foil for graphene growth.
    Tsai LW; Tai NH
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10489-96. PubMed ID: 24922088
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural Modification of Single-Layer Graphene Under Laser Irradiation Featured by Micro-Raman Spectroscopy.
    Stubrov Y; Nikolenko A; Strelchuk V; Nedilko S; Chornii V
    Nanoscale Res Lett; 2017 Dec; 12(1):297. PubMed ID: 28446000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photocontrolled molecular structural transition and doping in graphene.
    Peimyoo N; Li J; Shang J; Shen X; Qiu C; Xie L; Huang W; Yu T
    ACS Nano; 2012 Oct; 6(10):8878-86. PubMed ID: 22966836
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response.
    Du A; Sanvito S; Li Z; Wang D; Jiao Y; Liao T; Sun Q; Ng YH; Zhu Z; Amal R; Smith SC
    J Am Chem Soc; 2012 Mar; 134(9):4393-7. PubMed ID: 22339061
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Harnessing denatured protein for controllable bipolar doping of a monolayer graphene.
    Jang SK; Jang JR; Choe WS; Lee S
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1250-6. PubMed ID: 25546483
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploring carrier transport phenomena in a CVD-assembled graphene FET on hexagonal boron nitride.
    Kim E; Jai N; Jacobs-Gedri R; Xu Y; Yu B
    Nanotechnology; 2012 Mar; 23(12):125706. PubMed ID: 22414953
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transfer free graphene growth on SiO
    Vishwakarma R; Rosmi MS; Takahashi K; Wakamatsu Y; Yaakob Y; Araby MI; Kalita G; Kitazawa M; Tanemura M
    Sci Rep; 2017 Mar; 7():43756. PubMed ID: 28251997
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Field effect transistors and photodetectors based on nanocrystalline graphene derived from electron beam induced carbonaceous patterns.
    Kurra N; Bhadram VS; Narayana C; Kulkarni GU
    Nanotechnology; 2012 Oct; 23(42):425301. PubMed ID: 23036939
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrical and noise characteristics of graphene field-effect transistors: ambient effects, noise sources and physical mechanisms.
    Rumyantsev S; Liu G; Stillman W; Shur M; Balandin AA
    J Phys Condens Matter; 2010 Oct; 22(39):395302. PubMed ID: 21403224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.