BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25569436)

  • 1. Identifying gene disruptions in novel balanced de novo constitutional translocations in childhood cancer patients by whole-genome sequencing.
    Ritter DI; Haines K; Cheung H; Davis CF; Lau CC; Berg JS; Brown CW; Thompson PA; Gibbs R; Wheeler DA; Plon SE
    Genet Med; 2015 Oct; 17(10):831-5. PubMed ID: 25569436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constitutional translocation breakpoint mapping by genome-wide paired-end sequencing identifies HACE1 as a putative Wilms tumour susceptibility gene.
    Slade I; Stephens P; Douglas J; Barker K; Stebbings L; Abbaszadeh F; Pritchard-Jones K; ; Cole R; Pizer B; Stiller C; Vujanic G; Scott RH; Stratton MR; Rahman N
    J Med Genet; 2010 May; 47(5):342-7. PubMed ID: 19948536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise detection of chromosomal translocation or inversion breakpoints by whole-genome sequencing.
    Suzuki T; Tsurusaki Y; Nakashima M; Miyake N; Saitsu H; Takeda S; Matsumoto N
    J Hum Genet; 2014 Dec; 59(12):649-54. PubMed ID: 25296578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Breakpoint Mapping in Apparently Balanced Translocation Families with Discordant Phenotypes Using Whole Genome Mate-Pair Sequencing.
    Aristidou C; Koufaris C; Theodosiou A; Bak M; Mehrjouy MM; Behjati F; Tanteles G; Christophidou-Anastasiadou V; Tommerup N; Sismani C
    PLoS One; 2017; 12(1):e0169935. PubMed ID: 28072833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Structural Variation: Mechanisms of Chromosome Rearrangements.
    Weckselblatt B; Rudd MK
    Trends Genet; 2015 Oct; 31(10):587-599. PubMed ID: 26209074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of renal cell carcinoma-associated constitutional chromosome abnormalities by genome sequencing.
    Smith PS; Whitworth J; West H; Cook J; Gardiner C; Lim DHK; Morrison PJ; Hislop RG; Murray E; ; Tischkowitz M; Warren AY; Woodward ER; Maher ER
    Genes Chromosomes Cancer; 2020 Jun; 59(6):333-347. PubMed ID: 31943436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering balanced translocations in infertile males by next-generation sequencing to identify candidate genes for spermatogenesis disorders.
    Yammine T; Reynaud N; Lejeune H; Diguet F; Rollat-Farnier PA; Labalme A; Plotton I; Farra C; Sanlaville D; Chouery E; Schluth-Bolard C
    Mol Hum Reprod; 2021 May; 27(6):. PubMed ID: 34009290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long insert whole genome sequencing for copy number variant and translocation detection.
    Liang WS; Aldrich J; Tembe W; Kurdoglu A; Cherni I; Phillips L; Reiman R; Baker A; Weiss GJ; Carpten JD; Craig DW
    Nucleic Acids Res; 2014 Jan; 42(2):e8. PubMed ID: 24071583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping of breakpoints in balanced chromosomal translocations by shallow whole-genome sequencing points to
    Murcia Pienkowski V; Kucharczyk M; Młynek M; Szczałuba K; Rydzanicz M; Poszewiecka B; Skórka A; Sykulski M; Biernacka A; Koppolu AA; Posmyk R; Walczak A; Kosińska J; Krajewski P; Castaneda J; Obersztyn E; Jurkiewicz E; Śmigiel R; Gambin A; Chrzanowska K; Krajewska-Walasek M; Płoski R
    J Med Genet; 2019 Feb; 56(2):104-112. PubMed ID: 30352868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two patients with balanced translocations and autistic disorder: CSMD3 as a candidate gene for autism found in their common 8q23 breakpoint area.
    Floris C; Rassu S; Boccone L; Gasperini D; Cao A; Crisponi L
    Eur J Hum Genet; 2008 Jun; 16(6):696-704. PubMed ID: 18270536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole genome paired-end sequencing elucidates functional and phenotypic consequences of balanced chromosomal rearrangement in patients with developmental disorders.
    Schluth-Bolard C; Diguet F; Chatron N; Rollat-Farnier PA; Bardel C; Afenjar A; Amblard F; Amiel J; Blesson S; Callier P; Capri Y; Collignon P; Cordier MP; Coubes C; Demeer B; Chaussenot A; Demurger F; Devillard F; Doco-Fenzy M; Dupont C; Dupont JM; Dupuis-Girod S; Faivre L; Gilbert-Dussardier B; Guerrot AM; Houlier M; Isidor B; Jaillard S; Joly-Hélas G; Kremer V; Lacombe D; Le Caignec C; Lebbar A; Lebrun M; Lesca G; Lespinasse J; Levy J; Malan V; Mathieu-Dramard M; Masson J; Masurel-Paulet A; Mignot C; Missirian C; Morice-Picard F; Moutton S; Nadeau G; Pebrel-Richard C; Odent S; Paquis-Flucklinger V; Pasquier L; Philip N; Plutino M; Pons L; Portnoï MF; Prieur F; Puechberty J; Putoux A; Rio M; Rooryck-Thambo C; Rossi M; Sarret C; Satre V; Siffroi JP; Till M; Touraine R; Toutain A; Toutain J; Valence S; Verloes A; Whalen S; Edery P; Tabet AC; Sanlaville D
    J Med Genet; 2019 Aug; 56(8):526-535. PubMed ID: 30923172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical application of whole-genome low-coverage next-generation sequencing to detect and characterize balanced chromosomal translocations.
    Liang D; Wang Y; Ji X; Hu H; Zhang J; Meng L; Lin Y; Ma D; Jiang T; Jiang H; Asan ; Song L; Guo J; Hu P; Xu Z
    Clin Genet; 2017 Apr; 91(4):605-610. PubMed ID: 27491356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Balanced translocations in mental retardation.
    Vandeweyer G; Kooy RF
    Hum Genet; 2009 Jul; 126(1):133-47. PubMed ID: 19347365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HiNT: a computational method for detecting copy number variations and translocations from Hi-C data.
    Wang S; Lee S; Chu C; Jain D; Kerpedjiev P; Nelson GM; Walsh JM; Alver BH; Park PJ
    Genome Biol; 2020 Mar; 21(1):73. PubMed ID: 32293513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of complex chromosomal rearrangements by targeted capture and next-generation sequencing.
    Sobreira NL; Gnanakkan V; Walsh M; Marosy B; Wohler E; Thomas G; Hoover-Fong JE; Hamosh A; Wheelan SJ; Valle D
    Genome Res; 2011 Oct; 21(10):1720-7. PubMed ID: 21890680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finding underlying genetic mechanisms of two patients with autism spectrum disorder carrying familial apparently balanced chromosomal translocations.
    Toraman B; Bilginer SÇ; Hesapçıoğlu ST; Göker Z; Soykam HO; Ergüner B; Dinçer T; Yıldız G; Ünsal S; Kasap BK; Kandil S; Kalay E
    J Gene Med; 2021 Apr; 23(4):e3322. PubMed ID: 33591602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The clinical impact of chromosomal rearrangements with breakpoints upstream of the SOX9 gene: two novel de novo balanced translocations associated with acampomelic campomelic dysplasia.
    Fonseca AC; Bonaldi A; Bertola DR; Kim CA; Otto PA; Vianna-Morgante AM
    BMC Med Genet; 2013 May; 14():50. PubMed ID: 23648064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-Genome Sequencing of Cytogenetically Balanced Chromosome Translocations Identifies Potentially Pathological Gene Disruptions and Highlights the Importance of Microhomology in the Mechanism of Formation.
    Nilsson D; Pettersson M; Gustavsson P; Förster A; Hofmeister W; Wincent J; Zachariadis V; Anderlid BM; Nordgren A; Mäkitie O; Wirta V; Käller M; Vezzi F; Lupski JR; Nordenskjöld M; Lundberg ES; Carvalho CMB; Lindstrand A
    Hum Mutat; 2017 Feb; 38(2):180-192. PubMed ID: 27862604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole genome sequencing reveals translocation breakpoints disrupting TP63 gene underlying split hand/foot malformation in a Chinese family.
    Peng Y; Yang S; Xi H; Hu J; Jia Z; Pang J; Liu J; Yu W; Tang C; Wang H
    Mol Genet Genomic Med; 2021 Mar; 9(3):e1604. PubMed ID: 33471964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tumor suppressor gene TRC8/RNF139 is disrupted by a constitutional balanced translocation t(8;22)(q24.13;q11.21) in a young girl with dysgerminoma.
    Gimelli S; Beri S; Drabkin HA; Gambini C; Gregorio A; Fiorio P; Zuffardi O; Gemmill RM; Giorda R; Gimelli G
    Mol Cancer; 2009 Jul; 8():52. PubMed ID: 19642973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.