These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 25569445)

  • 1. Orientation selectivity in inhibition-dominated networks of spiking neurons: effect of single neuron properties and network dynamics.
    Sadeh S; Rotter S
    PLoS Comput Biol; 2015 Jan; 11(1):e1004045. PubMed ID: 25569445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of orientation selectivity in recurrent networks of spiking neurons with different random topologies.
    Sadeh S; Rotter S
    PLoS One; 2014; 9(12):e114237. PubMed ID: 25469704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mean-driven and fluctuation-driven persistent activity in recurrent networks.
    Renart A; Moreno-Bote R; Wang XJ; Parga N
    Neural Comput; 2007 Jan; 19(1):1-46. PubMed ID: 17134316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex.
    Lerchner A; Sterner G; Hertz J; Ahmadi M
    Network; 2006 Jun; 17(2):131-50. PubMed ID: 16818394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of synaptic plasticity on orientation selectivity in a balanced model of primary visual cortex.
    Gonzalo Cogno S; Mato G
    Front Neural Circuits; 2015; 9():42. PubMed ID: 26347615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of orientation selectivity in primary visual cortex without a functional map.
    Hansel D; van Vreeswijk C
    J Neurosci; 2012 Mar; 32(12):4049-64. PubMed ID: 22442071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrent interactions in spiking networks with arbitrary topology.
    Pernice V; Staude B; Cardanobile S; Rotter S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031916. PubMed ID: 22587132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks.
    Cavallari S; Panzeri S; Mazzoni A
    Front Neural Circuits; 2014; 8():12. PubMed ID: 24634645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical network modeling: analytical methods for firing rates and some properties of networks of LIF neurons.
    Tuckwell HC
    J Physiol Paris; 2006; 100(1-3):88-99. PubMed ID: 17064883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reduction for spiking integrate-and-fire network dynamics ranging from homogeneity to synchrony.
    Zhang JW; Rangan AV
    J Comput Neurosci; 2015 Apr; 38(2):355-404. PubMed ID: 25601481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing of Feature Selectivity in Cortical Networks with Specific Connectivity.
    Sadeh S; Clopath C; Rotter S
    PLoS One; 2015; 10(6):e0127547. PubMed ID: 26083363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous dynamics of asymmetric random recurrent spiking neural networks.
    Soula H; Beslon G; Mazet O
    Neural Comput; 2006 Jan; 18(1):60-79. PubMed ID: 16354381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity.
    Sadeh S; Clopath C; Rotter S
    PLoS Comput Biol; 2015 Jun; 11(6):e1004307. PubMed ID: 26090844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights from a simple expression for linear fisher information in a recurrently connected population of spiking neurons.
    Beck J; Bejjanki VR; Pouget A
    Neural Comput; 2011 Jun; 23(6):1484-502. PubMed ID: 21395435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speed of synchronization in complex networks of neural oscillators: analytic results based on Random Matrix Theory.
    Timme M; Geisel T; Wolf F
    Chaos; 2006 Mar; 16(1):015108. PubMed ID: 16599774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.
    Schwemmer MA; Fairhall AL; Denéve S; Shea-Brown ET
    J Neurosci; 2015 Jul; 35(28):10112-34. PubMed ID: 26180189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homeostatic Activity-Dependent Tuning of Recurrent Networks for Robust Propagation of Activity.
    Gjorgjieva J; Evers JF; Eglen SJ
    J Neurosci; 2016 Mar; 36(13):3722-34. PubMed ID: 27030758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How noise contributes to contrast invariance of orientation tuning in cat visual cortex.
    Hansel D; van Vreeswijk C
    J Neurosci; 2002 Jun; 22(12):5118-28. PubMed ID: 12077207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.
    Jovanović S; Rotter S
    PLoS Comput Biol; 2016 Jun; 12(6):e1004963. PubMed ID: 27271768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.
    Ly C
    J Comput Neurosci; 2015 Dec; 39(3):311-27. PubMed ID: 26453404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.