BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 25569523)

  • 21. Establishing a Fed-Batch Process for Protease Expression with Bacillus licheniformis in Polymer-Based Controlled-Release Microtiter Plates.
    Habicher T; Rauls EKA; Egidi F; Keil T; Klein T; Daub A; Büchs J
    Biotechnol J; 2020 Feb; 15(2):e1900088. PubMed ID: 31471944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a two-stage feeding strategy based on the kind and level of feeding nutrients for improving fed-batch production of L-threonine by Escherichia coli.
    Liu S; Liang Y; Liu Q; Tao T; Lai S; Chen N; Wen T
    Appl Microbiol Biotechnol; 2013 Jan; 97(2):573-83. PubMed ID: 22965189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3-phenyllactic acid production by free-whole-cells of Lactobacillus crustorum in batch and continuous fermentation systems.
    Xu JJ; Fu LJ; Si KL; Yue TL; Guo CF
    J Appl Microbiol; 2020 Aug; 129(2):335-344. PubMed ID: 32009287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations.
    Li J; Jaitzig J; Lu P; Süssmuth RD; Neubauer P
    Microb Cell Fact; 2015 Jun; 14():83. PubMed ID: 26063334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lactic acid production directly from starch in a starch-controlled fed-batch operation using Lactobacillus amylophilus.
    Yen HW; Kang JL
    Bioprocess Biosyst Eng; 2010 Nov; 33(9):1017-23. PubMed ID: 20373112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient production of arachidonic acid by Mortierella alpina through integrating fed-batch culture with a two-stage pH control strategy.
    Li X; Lin Y; Chang M; Jin Q; Wang X
    Bioresour Technol; 2015 Apr; 181():275-82. PubMed ID: 25661306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fed-batch cultivation of Wautersia eutropha.
    Patwardhan P; Srivastava AK
    Bioresour Technol; 2008 Apr; 99(6):1787-92. PubMed ID: 17532211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fed-batch production of poly-3-hydroxydecanoate from decanoic acid.
    Gao J; Ramsay JA; Ramsay BA
    J Biotechnol; 2016 Jan; 218():102-7. PubMed ID: 26689481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae.
    Jun SA; Moon C; Kang CH; Kong SW; Sang BI; Um Y
    Appl Biochem Biotechnol; 2010 May; 161(1-8):491-501. PubMed ID: 19921491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of feeding conditions on clavulanic acid production in fed-batch cultivation with medium containing glycerol.
    Teodoro JC; Baptista-Neto A; Cruz-Hernández IL; Hokka CO; Badino AC
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):450-5. PubMed ID: 16395544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of L-amino acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst.
    Hou Y; Hossain GS; Li J; Shin HD; Du G; Liu L
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2183-91. PubMed ID: 26552798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum.
    Oshiro M; Hanada K; Tashiro Y; Sonomoto K
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):1177-85. PubMed ID: 20502892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum on lactic acid based on oxygen transfer and pH.
    Seletzky JM; Noak U; Fricke J; Welk E; Eberhard W; Knocke C; Büchs J
    Biotechnol Bioeng; 2007 Nov; 98(4):800-11. PubMed ID: 17318907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-stage high cell continuous fermentation for high productivity and titer.
    Chang HN; Kim NJ; Kang J; Jeong CM; Choi JD; Fei Q; Kim BJ; Kwon S; Lee SY; Kim J
    Bioprocess Biosyst Eng; 2011 May; 34(4):419-31. PubMed ID: 21127908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An effective and simplified fed-batch strategy for improved 2,3-butanediol production by Klebsiella oxytoca.
    Nie ZK; Ji XJ; Huang H; Du J; Li ZY; Qu L; Zhang Q; Ouyang PK
    Appl Biochem Biotechnol; 2011 Apr; 163(8):946-53. PubMed ID: 20938754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling and parameters identification of 2-keto-L-gulonic acid fed-batch fermentation.
    Wang T; Sun J; Yuan J
    Bioprocess Biosyst Eng; 2015 Apr; 38(4):605-14. PubMed ID: 25348654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using an advanced microfermentor system for strain screening and fermentation optimization.
    Xie D
    Methods Mol Biol; 2012; 834():217-31. PubMed ID: 22144362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of an industrial medium and a novel fed-batch strategy for high-level expression of recombinant β-mananase by Pichia pastoris.
    Zheng J; Zhao W; Guo N; Lin F; Tian J; Wu L; Zhou H
    Bioresour Technol; 2012 Aug; 118():257-64. PubMed ID: 22705532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade.
    Atlić A; Koller M; Scherzer D; Kutschera C; Grillo-Fernandes E; Horvat P; Chiellini E; Braunegg G
    Appl Microbiol Biotechnol; 2011 Jul; 91(2):295-304. PubMed ID: 21503760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of sophorolipids production in Candida batistae, an unexplored sophorolipids producer, by fed-batch fermentation.
    Kim JH; Oh YR; Han SW; Jang YA; Hong SH; Ahn JH; Eom GT
    Bioprocess Biosyst Eng; 2021 Apr; 44(4):831-839. PubMed ID: 33683450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.