BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 25569532)

  • 1. Interactions of chromatin context, binding site sequence content, and sequence evolution in stress-induced p53 occupancy and transactivation.
    Su D; Wang X; Campbell MR; Song L; Safi A; Crawford GE; Bell DA
    PLoS Genet; 2015 Jan; 11(1):e1004885. PubMed ID: 25569532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. YY1/BCCIP Coordinately Regulates P53-Responsive Element (p53RE)-Mediated Transactivation of p21
    Sui Y; Wu T; Li F; Wang F; Cai Y; Jin J
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31035388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-genome cartography of p53 response elements ranked on transactivation potential.
    Tebaldi T; Zaccara S; Alessandrini F; Bisio A; Ciribilli Y; Inga A
    BMC Genomics; 2015 Jun; 16(1):464. PubMed ID: 26081755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redefining the p53 response element.
    Wang B; Xiao Z; Ren EC
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14373-8. PubMed ID: 19597154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p53 binding sites in normal and cancer cells are characterized by distinct chromatin context.
    Bao F; LoVerso PR; Fisk JN; Zhurkin VB; Cui F
    Cell Cycle; 2017; 16(21):2073-2085. PubMed ID: 28820292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of wild-type p53 activity by mutant p53 R273H depends on the p53 responsive element (p53RE). A comparative study between the p53REs of the MDM2, WAFI/Cip1 and Bax genes in the lung cancer environment. WAFI/Cip1 = WAF1/Cip1.
    Zacharatos PV; Gorgoulis VG; Kotsinas A; Manolis EN; Liloglou T; Rassidakis AN; Kanavaros P; Field JD; Halazonetis T; Kittas C
    Anticancer Res; 1999; 19(1A):579-87. PubMed ID: 10226602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human single-nucleotide polymorphisms alter p53 sequence-specific binding at gene regulatory elements.
    Bandele OJ; Wang X; Campbell MR; Pittman GS; Bell DA
    Nucleic Acids Res; 2011 Jan; 39(1):178-89. PubMed ID: 20817676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of human guanylate-binding protein 1 gene (hGBP1) as a direct transcriptional target gene of p53.
    Zhu Z; Wei J; Shi Z; Yang Y; Shao D; Li B; Wang X; Ma Z
    Biochem Biophys Res Commun; 2013 Jun; 436(2):204-11. PubMed ID: 23727578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Alu repeats on the evolution of human p53 binding sites.
    Cui F; Sirotin MV; Zhurkin VB
    Biol Direct; 2011 Jan; 6():2. PubMed ID: 21208455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The p53 response element and transcriptional repression.
    Wang B; Xiao Z; Ko HL; Ren EC
    Cell Cycle; 2010 Mar; 9(5):870-9. PubMed ID: 20160511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local depletion of DNA methylation identifies a repressive p53 regulatory region in the NEK2 promoter.
    Nabilsi NH; Ryder DJ; Peraza-Penton AC; Poudyal R; Loose DS; Kladde MP
    J Biol Chem; 2013 Dec; 288(50):35940-51. PubMed ID: 24163369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncanonical DNA motifs as transactivation targets by wild type and mutant p53.
    Jordan JJ; Menendez D; Inga A; Noureddine M; Bell DA; Resnick MA
    PLoS Genet; 2008 Jun; 4(6):e1000104. PubMed ID: 18714371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential transactivation by the p53 transcription factor is highly dependent on p53 level and promoter target sequence.
    Inga A; Storici F; Darden TA; Resnick MA
    Mol Cell Biol; 2002 Dec; 22(24):8612-25. PubMed ID: 12446780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure formed by inverted repeats in p53 response elements determines the transactivation activity of p53 protein.
    Brázda V; Čechová J; Battistin M; Coufal J; Jagelská EB; Raimondi I; Inga A
    Biochem Biophys Res Commun; 2017 Jan; 483(1):516-521. PubMed ID: 28007599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of two novel functional p53 responsive elements in the herpes simplex virus-1 genome.
    Hsieh JC; Kuta R; Armour CR; Boehmer PE
    Virology; 2014 Jul; 460-461():45-54. PubMed ID: 25010269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells.
    Menendez D; Nguyen TA; Freudenberg JM; Mathew VJ; Anderson CW; Jothi R; Resnick MA
    Nucleic Acids Res; 2013 Aug; 41(15):7286-301. PubMed ID: 23775793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of the class II tumor suppressor gene RIG1 is directly regulated by p53 tumor suppressor in cancer cell lines.
    Hsu TH; Chu CC; Jiang SY; Hung MW; Ni WC; Lin HE; Chang TC
    FEBS Lett; 2012 May; 586(9):1287-93. PubMed ID: 22616991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence analysis of p53 response-elements suggests multiple binding modes of the p53 tetramer to DNA targets.
    Ma B; Pan Y; Zheng J; Levine AJ; Nussinov R
    Nucleic Acids Res; 2007; 35(9):2986-3001. PubMed ID: 17439973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional evolution of the p53 regulatory network through its target response elements.
    Jegga AG; Inga A; Menendez D; Aronow BJ; Resnick MA
    Proc Natl Acad Sci U S A; 2008 Jan; 105(3):944-9. PubMed ID: 18187580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of new p53 target microRNAs by bioinformatics and functional analysis.
    Bisio A; De Sanctis V; Del Vescovo V; Denti MA; Jegga AG; Inga A; Ciribilli Y
    BMC Cancer; 2013 Nov; 13():552. PubMed ID: 24256616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.