These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25569690)

  • 61. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis.
    Dong Y; Mosquera-Giraldo LI; Taylor LS; Edgar KJ
    Biomacromolecules; 2016 Feb; 17(2):454-65. PubMed ID: 26714234
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Tandem Olefin Metathesis/Oxidative Cyclization: Synthesis of Tetrahydrofuran Diols from Simple Olefins.
    Dornan PK; Lee D; Grubbs RH
    J Am Chem Soc; 2016 May; 138(20):6372-5. PubMed ID: 27133576
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cross metathesis assisted solid-phase synthesis of glycopeptoids.
    Khan SN; Kim A; Grubbs RH; Kwon YU
    Org Lett; 2012 Jun; 14(12):2952-5. PubMed ID: 22676892
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Catalysts for new tasks: preparation and applications of tunable ruthenium catalysts for olefin metathesis.
    Grela K; Michrowska A; Bieniek M
    Chem Rec; 2006; 6(3):144-56. PubMed ID: 16795007
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ruthenium-catalyzed silyl ether formation and enyne metathesis sequence: synthesis of siloxacycles from terminal alkenyl alcohols and alkynylsilanes.
    Miller RL; Maifeld SV; Lee D
    Org Lett; 2004 Aug; 6(16):2773-6. PubMed ID: 15281766
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Iron-Catalyzed Olefin Metathesis: Recent Theoretical and Experimental Advances.
    Grau BW; Neuhauser A; Aghazada S; Meyer K; Tsogoeva SB
    Chemistry; 2022 Nov; 28(62):e202201414. PubMed ID: 35770829
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.
    Clousier N; Filippi A; Borré E; Guibal E; Crévisy C; Caijo F; Mauduit M; Dez I; Gaumont AC
    ChemSusChem; 2014 Apr; 7(4):1040-5. PubMed ID: 24616203
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.
    Meng X; Edgar KJ
    Carbohydr Polym; 2015 Nov; 132():565-73. PubMed ID: 26256383
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An ionic liquid-supported ruthenium carbene complex: a robust and recyclable catalyst for ring-closing olefin metathesis in ionic liquids.
    Audic N; Clavier H; Mauduit M; Guillemin JC
    J Am Chem Soc; 2003 Aug; 125(31):9248-9. PubMed ID: 12889926
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Olefin cross-metathesis with vinyl halides.
    Sashuk V; Samojłowicz C; Szadkowska A; Grela K
    Chem Commun (Camb); 2008 Jun; (21):2468-70. PubMed ID: 18491017
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Stereoselective synthesis of substituted tetrahydropyrans via domino olefin cross-metathesis/intramolecular oxa-conjugate cyclization.
    Fuwa H; Noto K; Sasaki M
    Org Lett; 2010 Apr; 12(7):1636-9. PubMed ID: 20222688
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Highly efficient ruthenium catalysts for the formation of tetrasubstituted olefins via ring-closing metathesis.
    Stewart IC; Ung T; Pletnev AA; Berlin JM; Grubbs RH; Schrodi Y
    Org Lett; 2007 Apr; 9(8):1589-92. PubMed ID: 17378575
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile.
    Wu T; Mu X; Liu G
    Angew Chem Int Ed Engl; 2011 Dec; 50(52):12578-81. PubMed ID: 22076660
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Azabicycloalkenes as synthetic intermediates--synthesis of azabicyclo[X.3.0]alkane scaffolds.
    Büchert M; Meinke S; Prenzel AH; Deppermann N; Maison W
    Org Lett; 2006 Nov; 8(24):5553-6. PubMed ID: 17107070
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Chemodivergent metathesis of dienynes catalyzed by ruthenium-indenylidene complexes: an experimental and computational study.
    Clavier H; Correa A; Escudero-Adán EC; Benet-Buchholz J; Cavallo L; Nolan SP
    Chemistry; 2009 Oct; 15(39):10244-54. PubMed ID: 19711384
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Efficient mono- and bifunctionalization of polyolefin dendrimers by olefin metathesis.
    Ornelas C; Méry D; Blais JC; Cloutet E; Ruiz Aranzaes J; Astruc D
    Angew Chem Int Ed Engl; 2005 Dec; 44(45):7399-404. PubMed ID: 16247824
    [No Abstract]   [Full Text] [Related]  

  • 77. Olefin metathesis in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate using a recyclable Ru catalyst: remarkable effect of a designer ionic tag.
    Yao Q; Zhang Y
    Angew Chem Int Ed Engl; 2003 Jul; 42(29):3395-8. PubMed ID: 12888968
    [No Abstract]   [Full Text] [Related]  

  • 78. Diversity-oriented synthesis and solid-phase organic synthesis under controlled microwave heating.
    Dai WM; Shi J
    Comb Chem High Throughput Screen; 2007 Dec; 10(10):837-56. PubMed ID: 18288947
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Highly active water-soluble olefin metathesis catalyst.
    Hong SH; Grubbs RH
    J Am Chem Soc; 2006 Mar; 128(11):3508-9. PubMed ID: 16536510
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Reactions of strained hydrocarbons with alkene and alkyne metathesis catalysts.
    Carnes M; Buccella D; Siegrist T; Steigerwald ML; Nuckolls C
    J Am Chem Soc; 2008 Oct; 130(43):14078-9. PubMed ID: 18826219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.