These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 25569794)
1. Effect of cerebellar transcranial magnetic stimulation on soleus Ia presynaptic and reciprocal inhibition. Matsugi A; Mori N; Uehara S; Kamata N; Oku K; Okada Y; Kikuchi Y; Mukai K; Nagano K Neuroreport; 2015 Feb; 26(3):139-43. PubMed ID: 25569794 [TBL] [Abstract][Full Text] [Related]
2. Task dependency of the long-latency facilitatory effect on the soleus H-reflex by cerebellar transcranial magnetic stimulation. Matsugi A; Mori N; Uehara S; Kamata N; Oku K; Mukai K; Nagano K Neuroreport; 2014 Dec; 25(17):1375-80. PubMed ID: 25325350 [TBL] [Abstract][Full Text] [Related]
3. Modulation of transmission in the corticospinal and group Ia afferent pathways to soleus motoneurons during bicycling. Pyndt HS; Nielsen JB J Neurophysiol; 2003 Jan; 89(1):304-14. PubMed ID: 12522181 [TBL] [Abstract][Full Text] [Related]
4. Spinal inhibition of descending command to soleus motoneurons is removed prior to dorsiflexion. Geertsen SS; van de Ruit M; Grey MJ; Nielsen JB J Physiol; 2011 Dec; 589(Pt 23):5819-31. PubMed ID: 21986208 [TBL] [Abstract][Full Text] [Related]
5. Do changes in spinal reflex excitability elicited by transcranial magnetic stimulation differ based on the site of cerebellar stimulation? Matsugi A Somatosens Mot Res; 2018 Jun; 35(2):80-85. PubMed ID: 29732943 [TBL] [Abstract][Full Text] [Related]
6. Cerebellar transcranial magnetic stimulation facilitates excitability of spinal reflex, but does not affect cerebellar inhibition and facilitation in spinocerebellar ataxia. Matsugi A; Kikuchi Y; Kaneko K; Seko Y; Odagaki M Neuroreport; 2018 Jul; 29(10):808-813. PubMed ID: 29659444 [TBL] [Abstract][Full Text] [Related]
7. Inter-individual variation in reciprocal Ia inhibition is dependent on the descending volleys delivered from corticospinal neurons to Ia interneurons. Kubota S; Uehara K; Morishita T; Hirano M; Funase K J Electromyogr Kinesiol; 2014 Feb; 24(1):46-51. PubMed ID: 24321700 [TBL] [Abstract][Full Text] [Related]
8. Cerebellar transcranial direct current stimulation modulates the effect of cerebellar transcranial magnetic stimulation on the excitability of spinal reflex. Matsugi A; Okada Y Neurosci Res; 2020 Jan; 150():37-43. PubMed ID: 30794822 [TBL] [Abstract][Full Text] [Related]
9. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking. Ung RV; Imbeault MA; Ethier C; Brizzi L; Capaday C J Neurophysiol; 2005 Aug; 94(2):1133-42. PubMed ID: 15829598 [TBL] [Abstract][Full Text] [Related]
11. Effects of cerebellar transcranial direct current stimulation on the excitability of spinal motor neurons and vestibulospinal tract in healthy individuals. Sato Y; Terasawa Y; Okada Y; Hasui N; Mizuta N; Ohnishi S; Fujita D; Morioka S Exp Brain Res; 2024 Oct; 242(10):2381-2390. PubMed ID: 39133291 [TBL] [Abstract][Full Text] [Related]
12. Effects of postural and voluntary muscle contraction on modulation of the soleus H reflex by transcranial magnetic stimulation. Guzmán-López J; Selvi A; Solà-Valls N; Casanova-Molla J; Valls-Solé J Exp Brain Res; 2015 Dec; 233(12):3425-31. PubMed ID: 26289484 [TBL] [Abstract][Full Text] [Related]
13. Effects of hip joint angle changes on intersegmental spinal coupling in human spinal cord injury. Knikou M Exp Brain Res; 2005 Dec; 167(3):381-93. PubMed ID: 16059682 [TBL] [Abstract][Full Text] [Related]
14. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking. Iglesias C; Nielsen JB; Marchand-Pauvert V Eur J Neurosci; 2008 Oct; 28(7):1351-61. PubMed ID: 18973562 [TBL] [Abstract][Full Text] [Related]
15. Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor-evoked potentials. Knash ME; Kido A; Gorassini M; Chan KM; Stein RB Exp Brain Res; 2003 Dec; 153(3):366-77. PubMed ID: 14610631 [TBL] [Abstract][Full Text] [Related]
16. Motoneuron responsiveness to corticospinal tract stimulation during the silent period induced by transcranial magnetic stimulation. Yacyshyn AF; Woo EJ; Price MC; McNeil CJ Exp Brain Res; 2016 Dec; 234(12):3457-3463. PubMed ID: 27481287 [TBL] [Abstract][Full Text] [Related]
17. Paired associative transspinal and transcortical stimulation produces plasticity in human cortical and spinal neuronal circuits. Dixon L; Ibrahim MM; Santora D; Knikou M J Neurophysiol; 2016 Aug; 116(2):904-16. PubMed ID: 27281748 [TBL] [Abstract][Full Text] [Related]
18. Rhythmic arm swing enhances long latency facilitatory effect of transcranial magnetic stimulation on soleus motoneuron pool excitability. Hiraoka K; Akizaki K; Ashida A; Miki M; Okada T; Shin S; Takeno K; Yasuoka M Somatosens Mot Res; 2011; 28(3-4):94-101. PubMed ID: 22115077 [TBL] [Abstract][Full Text] [Related]
19. Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. Taube W; Schubert M; Gruber M; Beck S; Faist M; Gollhofer A J Appl Physiol (1985); 2006 Aug; 101(2):420-9. PubMed ID: 16601305 [TBL] [Abstract][Full Text] [Related]
20. The use of F-response in defining interstimulus intervals appropriate for LTP-like plasticity induction in lower limb spinal paired associative stimulation. Shulga A; Lioumis P; Kirveskari E; Savolainen S; Mäkelä JP; Ylinen A J Neurosci Methods; 2015 Mar; 242():112-7. PubMed ID: 25597909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]