These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25569821)

  • 1. Generation of spin currents by surface plasmon resonance.
    Uchida K; Adachi H; Kikuchi D; Ito S; Qiu Z; Maekawa S; Saitoh E
    Nat Commun; 2015 Jan; 6():5910. PubMed ID: 25569821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncontact Spin Pumping by Microwave Evanescent Fields.
    Yu T; Bauer GEW
    Phys Rev Lett; 2020 Jun; 124(23):236801. PubMed ID: 32603158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of Biosensors Based on Plasmonic-Enhanced Processes in the Metallic and Meta-Material-Supported Nanostructures.
    Verma S; Pathak AK; Rahman BMA
    Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disordered photonics coupled with embedded nano-Au plasmonics inducing efficient photocurrent enhancement.
    Li J; Wang J; Dai Z; Li H
    Talanta; 2018 Jan; 176():428-436. PubMed ID: 28917772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Processes behind Plasmonic Applications.
    Babicheva VE
    Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-controlled fluorescence: A new detection technology.
    Lakowicz JR; Chowdhury MH; Ray K; Zhang J; Fu Y; Badugu R; Sabanayagam CR; Nowaczyk K; Szmacinski H; Aslan K; Geddes CD
    Proc SPIE Int Soc Opt Eng; 2006; 6099():609909. PubMed ID: 20953312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonics in Biology and Plasmon-Controlled Fluorescence.
    Lakowicz JR
    Plasmonics; 2006 Mar; 1(1):5-33. PubMed ID: 19890454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical transverse spin coupling through a plasmonic nanoparticle for particle-identification and field-mapping.
    Yang AP; Du LP; Meng FF; Yuan XC
    Nanoscale; 2018 May; 10(19):9286-9291. PubMed ID: 29737348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum well state induced oscillation of pure spin currents in Fe/Au/Pd(001) systems.
    Montoya E; Heinrich B; Girt E
    Phys Rev Lett; 2014 Sep; 113(13):136601. PubMed ID: 25302912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magneto-optical properties of Au upon the injection of hot spin-polarized electrons across Fe/Au(0 0 1) interfaces.
    Alekhin A; Razdolski I; Berritta M; Bürstel D; Temnov V; Diesing D; Bovensiepen U; Woltersdorf G; Oppeneer PM; Melnikov A
    J Phys Condens Matter; 2019 Mar; 31(12):124002. PubMed ID: 30625433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate phonon-mediated plasmon hybridization in coplanar graphene nanostructures for broadband plasmonic circuits.
    Yang X; Kong XT; Bai B; Li Z; Hu H; Qiu X; Dai Q
    Small; 2015 Feb; 11(5):591-6. PubMed ID: 25273326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active quantum plasmonics.
    Marinica DC; Zapata M; Nordlander P; Kazansky AK; M Echenique P; Aizpurua J; Borisov AG
    Sci Adv; 2015 Dec; 1(11):e1501095. PubMed ID: 26824066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance in gold nanoparticles: a review.
    Amendola V; Pilot R; Frasconi M; Maragò OM; Iatì MA
    J Phys Condens Matter; 2017 May; 29(20):203002. PubMed ID: 28426435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys.
    Amendola V; Scaramuzza S; Agnoli S; Polizzi S; Meneghetti M
    Nanoscale; 2014; 6(3):1423-33. PubMed ID: 24309909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unconventional Breathing Currents Far beyond the Quantum Tunneling Distances in Large-Gapped Nanoplasmonic Systems.
    Satheesh A; Yang CM; Gaidhane V; Sood N; Goel N; Bozkurt S; Singh KK; Bhalla N
    Nano Lett; 2024 Mar; 24(10):3157-3164. PubMed ID: 38278135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunability of hybridized plasmonic waveguide mediated by surface plasmon polaritons.
    Jiang MM; Chen HY; Shan CX; Shen DZ
    Phys Chem Chem Phys; 2014 Aug; 16(30):16233-40. PubMed ID: 24968699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations.
    Iberi V; Mirsaleh-Kohan N; Camden JP
    J Phys Chem Lett; 2013 Apr; 4(7):1070-8. PubMed ID: 26282023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots.
    Zhao F; Zeng J; Parvez Arnob MM; Sun P; Qi J; Motwani P; Gheewala M; Li CH; Paterson A; Strych U; Raja B; Willson RC; Wolfe JC; Lee TR; Shih WC
    Nanoscale; 2014 Jul; 6(14):8199-207. PubMed ID: 24926835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry.
    Zheng BY; Zhao H; Manjavacas A; McClain M; Nordlander P; Halas NJ
    Nat Commun; 2015 Jul; 6():7797. PubMed ID: 26165521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.