These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 25569884)
1. Human motion segmentation by data point classification. Lin JF; Joukov V; Kulic D Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():9-13. PubMed ID: 25569884 [TBL] [Abstract][Full Text] [Related]
2. Classification-based Segmentation for Rehabilitation Exercise Monitoring. Lin JF; Joukov V; Kulić D J Rehabil Assist Technol Eng; 2018; 5():2055668318761523. PubMed ID: 31191926 [TBL] [Abstract][Full Text] [Related]
3. Segmentation of human upper body movement using multiple IMU sensors. Aoki T; Lin JF; Kulic D; Venture G Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3163-3166. PubMed ID: 28268979 [TBL] [Abstract][Full Text] [Related]
4. Online Segmentation of Human Motion for Automated Rehabilitation Exercise Analysis. Lin JF; Kulić D IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):168-80. PubMed ID: 23661321 [TBL] [Abstract][Full Text] [Related]
5. Segmenting human motion for automated rehabilitation exercise analysis. Feng-Shun Lin J; Kulić D Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2881-4. PubMed ID: 23366526 [TBL] [Abstract][Full Text] [Related]
6. Human pose recovery using wireless inertial measurement units. Lin JF; Kulić D Physiol Meas; 2012 Dec; 33(12):2099-115. PubMed ID: 23174667 [TBL] [Abstract][Full Text] [Related]
7. Gait assessment system based on novel gait variability measures. Wang X; Ristic-Durrant D; Spranger M; Graser A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():467-472. PubMed ID: 28813864 [TBL] [Abstract][Full Text] [Related]
8. Automatic Multi-Level In-Exhale Segmentation and Enhanced Generalized S-Transform for wheezing detection. Chen H; Yuan X; Li J; Pei Z; Zheng X Comput Methods Programs Biomed; 2019 Sep; 178():163-173. PubMed ID: 31416545 [TBL] [Abstract][Full Text] [Related]
10. Online tracking of the lower body joint angles using IMUs for gait rehabilitation. Joukov V; Karg M; Kulic D Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2310-3. PubMed ID: 25570450 [TBL] [Abstract][Full Text] [Related]
11. A CNN-SVM combined model for pattern recognition of knee motion using mechanomyography signals. Wu H; Huang Q; Wang D; Gao L J Electromyogr Kinesiol; 2018 Oct; 42():136-142. PubMed ID: 30077088 [TBL] [Abstract][Full Text] [Related]
12. Quantifying the Consistency of Wearable Knee Acoustical Emission Measurements During Complex Motions. Toreyin H; Jeong HK; Hersek S; Teague CN; Inan OT IEEE J Biomed Health Inform; 2016 Sep; 20(5):1265-72. PubMed ID: 27305689 [TBL] [Abstract][Full Text] [Related]
13. Examination of the Accuracy of Movement Tracking Systems for Monitoring Exercise for Musculoskeletal Rehabilitation. Obukhov A; Volkov A; Pchelintsev A; Nazarova A; Teselkin D; Surkova E; Fedorchuk I Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836887 [TBL] [Abstract][Full Text] [Related]
14. Multi-label classification for the analysis of human motion quality. Taylor PE; Almeida GJ; Hodgins JK; Kanade T Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2214-8. PubMed ID: 23366363 [TBL] [Abstract][Full Text] [Related]
15. Smoothed arg max Extreme Learning Machine: An Alternative to Avoid Classification Ripple in sEMG Signals. Cene VH; Machado J; Balbinot A Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6603-6606. PubMed ID: 31947355 [TBL] [Abstract][Full Text] [Related]
16. Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies. Zhang K; Lu W; Marziliano P Magn Reson Imaging; 2013 Dec; 31(10):1731-43. PubMed ID: 23867282 [TBL] [Abstract][Full Text] [Related]
17. Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization. Ma Y; Ding X; She Q; Luo Z; Potter T; Zhang Y Comput Math Methods Med; 2016; 2016():4941235. PubMed ID: 27313656 [TBL] [Abstract][Full Text] [Related]
18. EMG-based learning approach for estimating wrist motion. El-Khoury S; Batzianoulis I; Antuvan CW; Contu S; Masia L; Micera S; Billard A Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6732-5. PubMed ID: 26737838 [TBL] [Abstract][Full Text] [Related]
19. Segmentation of Exercise Repetitions Enabling Real-Time Patient Analysis and Feedback Using a Single Exemplar. Sarsfield J; Brown D; Sherkat N; Langensiepen C; Lewis J; Taheri M; Selwood L; Standen P; Logan P IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1004-1019. PubMed ID: 30990184 [TBL] [Abstract][Full Text] [Related]
20. Screening of vibroarthrographic signals via adaptive segmentation and linear prediation modeling. Moussavi ZM; Rangayyan RM; Bell GD; Frank CB; Ladly KO; Zhang YT IEEE Trans Biomed Eng; 1996 Jan; 43(1):15-23. PubMed ID: 8567002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]