These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 25569889)

  • 1. The effect of window size and lead time on pre-impact fall detection accuracy using support vector machine analysis of waist mounted inertial sensor data.
    Aziz O; Russell CM; Park EJ; Robinovitch SN
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():30-3. PubMed ID: 25569889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets.
    Aziz O; Klenk J; Schwickert L; Chiari L; Becker C; Park EJ; Mori G; Robinovitch SN
    PLoS One; 2017; 12(7):e0180318. PubMed ID: 28678808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials.
    Aziz O; Musngi M; Park EJ; Mori G; Robinovitch SN
    Med Biol Eng Comput; 2017 Jan; 55(1):45-55. PubMed ID: 27106749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinguishing the causes of falls in humans using an array of wearable tri-axial accelerometers.
    Aziz O; Park EJ; Mori G; Robinovitch SN
    Gait Posture; 2014; 39(1):506-12. PubMed ID: 24148648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A wearable system for pre-impact fall detection.
    Nyan MN; Tay FE; Murugasu E
    J Biomech; 2008 Dec; 41(16):3475-81. PubMed ID: 18996529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analysis of the accuracy of wearable sensors for classifying the causes of falls in humans.
    Aziz O; Robinovitch SN
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):670-6. PubMed ID: 21859608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Portable preimpact fall detector with inertial sensors.
    Wu G; Xue S
    IEEE Trans Neural Syst Rehabil Eng; 2008 Apr; 16(2):178-83. PubMed ID: 18403286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration and comparison of the pre-impact lead time of active and passive falls based on inertial sensors.
    Liang D; Ivanov K; Li H; Ning Y; Zhang Q; Wang L; Zhao G
    Biomed Mater Eng; 2014; 24(1):279-88. PubMed ID: 24211908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GBDT-Based Fall Detection with Comprehensive Data from Posture Sensor and Human Skeleton Extraction.
    Cai WY; Guo JH; Zhang MY; Ruan ZX; Zheng XC; Lv SS
    J Healthc Eng; 2020; 2020():8887340. PubMed ID: 32676176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Patient-Specific Single Sensor IoT-Based Wearable Fall Prediction and Detection System.
    Saadeh W; Butt SA; Altaf MAB
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):995-1003. PubMed ID: 30998473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting falls with wearable sensors using machine learning techniques.
    Özdemir AT; Barshan B
    Sensors (Basel); 2014 Jun; 14(6):10691-708. PubMed ID: 24945676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-impact Alarm System for Fall Detection Using MEMS Sensors and HMM-based SVM Classifier.
    Liang S; Chu T; Lin D; Ning Y; Li H; Zhao G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4401-4405. PubMed ID: 30441328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial sensing-based pre-impact detection of falls involving near-fall scenarios.
    Lee JK; Robinovitch SN; Park EJ
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):258-66. PubMed ID: 25252283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fall detection algorithm for the elderly using acceleration sensors on the shoes.
    Sim SY; Jeon HS; Chung GS; Kim SK; Kwon SJ; Lee WK; Park KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4935-8. PubMed ID: 22255445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Re-Enactment as a Method to Reproduce Real-World Fall Events Using Inertial Sensor Data: Development and Usability Study.
    Sczuka KS; Schwickert L; Becker C; Klenk J
    J Med Internet Res; 2020 Apr; 22(4):e13961. PubMed ID: 32242825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of simple thresholds for accelerometry-based parameters for fall detection.
    Kangas M; Konttila A; Winblad I; Jämsä T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1367-70. PubMed ID: 18002218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerometer-Based Fall Detection Using Machine Learning: Training and Testing on Real-World Falls.
    Palmerini L; Klenk J; Becker C; Chiari L
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33202738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinguishing near-falls from daily activities with wearable accelerometers and gyroscopes using Support Vector Machines.
    Aziz O; Park EJ; Mori G; Robinovitch SN
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5837-40. PubMed ID: 23367256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direction sensitive fall detection using a triaxial accelerometer and a barometric pressure sensor.
    Tolkiehn M; Atallah L; Lo B; Yang GZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():369-72. PubMed ID: 22254325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Large-Scale Open Motion Dataset (KFall) and Benchmark Algorithms for Detecting Pre-impact Fall of the Elderly Using Wearable Inertial Sensors.
    Yu X; Jang J; Xiong S
    Front Aging Neurosci; 2021; 13():692865. PubMed ID: 34335231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.