These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25569911)

  • 1. A novel stimulation for multi-class SSVEP-based brain-computer interface using patterns of time-varying frequencies.
    Dehzangi O; Nathan V; Zong C; Lee C; Kim I; Jafari R
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():118-21. PubMed ID: 25569911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-varying and simultaneous frequency stimulation for multi-class SSVEP-based brain-computer interface.
    Dehzangi O; Jafari R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1757-60. PubMed ID: 26736618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain-computer interface (BCI).
    Hwang HJ; Hwan Kim D; Han CH; Im CH
    Brain Res; 2013 Jun; 1515():66-77. PubMed ID: 23587933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel stimulation method for multi-class SSVEP-BCI using intermodulation frequencies.
    Chen X; Wang Y; Zhang S; Gao S; Hu Y; Gao X
    J Neural Eng; 2017 Apr; 14(2):026013. PubMed ID: 28091397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of higher frequency on the classification of steady-state visual evoked potentials.
    Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW
    J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-day and multi-band dataset for a steady-state visual-evoked potential-based brain-computer interface.
    Choi GY; Han CH; Jung YJ; Hwang HJ
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31765472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation.
    Punsawad Y; Wongsawat Y
    Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-modulated steady-state visual evoked potentials: a new stimulation method for brain-computer interfaces.
    Dreyer AM; Herrmann CS
    J Neurosci Methods; 2015 Feb; 241():1-9. PubMed ID: 25522824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An online hybrid BCI system based on SSVEP and EMG.
    Lin K; Cinetto A; Wang Y; Chen X; Gao S; Gao X
    J Neural Eng; 2016 Apr; 13(2):026020. PubMed ID: 26902294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas.
    Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training -Free Steady-State Visual Evoked Potential Brain-Computer Interface Based on Filter Bank Canonical Correlation Analysis and Spatiotemporal Beamforming Decoding.
    Ge S; Jiang Y; Wang P; Wang H; Zheng W
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1714-1723. PubMed ID: 31403435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple frequencies sequential coding for SSVEP-based brain-computer interface.
    Zhang Y; Xu P; Liu T; Hu J; Zhang R; Yao D
    PLoS One; 2012; 7(3):e29519. PubMed ID: 22412829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SSVEP-based brain-computer interfaces using FSK-modulated visual stimuli.
    Kimura Y; Tanaka T; Higashi H; Morikawa N
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2831-8. PubMed ID: 23739780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.
    Cao L; Ju Z; Li J; Jian R; Jiang C
    J Neurosci Methods; 2015 Sep; 253():10-7. PubMed ID: 26014663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing stimulus presentation on mobile devices for a truly portable SSVEP-based BCI.
    Wang YT; Wang Y; Cheng CK; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5271-4. PubMed ID: 24110925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of SSVEP-based BCI performance by the resting-state EEG network.
    Zhang Y; Xu P; Guo D; Yao D
    J Neural Eng; 2013 Dec; 10(6):066017. PubMed ID: 24280591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.