BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25569982)

  • 1. Modeling transcranial electric stimulation in mouse: a high resolution finite element study.
    Bernabei JM; Lee WH; Peterchev AV
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():406-9. PubMed ID: 25569982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: influence of white matter anisotropic conductivity.
    Lee WH; Deng ZD; Kim TS; Laine AF; Lisanby SH; Peterchev AV
    Neuroimage; 2012 Feb; 59(3):2110-23. PubMed ID: 22032945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model.
    Lee WH; Lisanby SH; Laine AF; Peterchev AV
    Eur Psychiatry; 2016 Aug; 36():55-64. PubMed ID: 27318858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomical variability predicts individual differences in transcranial electric stimulation motor threshold.
    Lee WH; Lisanby SH; Laine AF; Peterchev AV
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():815-8. PubMed ID: 24109812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric Field Model of Transcranial Electric Stimulation in Nonhuman Primates: Correspondence to Individual Motor Threshold.
    Lee WH; Lisanby SH; Laine AF; Peterchev AV
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2095-105. PubMed ID: 25910001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcranial direct current stimulation in patients after decompressive craniectomy: a finite element model to investigate factors affecting the cortical electric field.
    Sun W; Dong X; Yu G; Shuai L; Yuan Y; Ma C
    J Int Med Res; 2021 Feb; 49(2):300060520942112. PubMed ID: 33788619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling stimulation strength and focality in electroconvulsive therapy via current amplitude and electrode size and spacing: comparison with magnetic seizure therapy.
    Deng ZD; Lisanby SH; Peterchev AV
    J ECT; 2013 Dec; 29(4):325-35. PubMed ID: 24263276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation strength and focality of electroconvulsive therapy and magnetic seizure therapy in a realistic head model.
    Lee WH; Lisanby SH; Laine AF; Peterchev AV
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():410-3. PubMed ID: 25569983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of computational models of transcranial electrical stimulation.
    Bai S; Loo C; Dokos S
    Crit Rev Biomed Eng; 2013; 41(1):21-35. PubMed ID: 23510007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling transcranial electrical stimulation in the aging brain.
    Indahlastari A; Albizu A; O'Shea A; Forbes MA; Nissim NR; Kraft JN; Evangelista ND; Hausman HK; Woods AJ;
    Brain Stimul; 2020; 13(3):664-674. PubMed ID: 32289695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative modeling of transcranial magnetic and electric stimulation in mouse, monkey, and human.
    Alekseichuk I; Mantell K; Shirinpour S; Opitz A
    Neuroimage; 2019 Jul; 194():136-148. PubMed ID: 30910725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple method for EEG guided transcranial electrical stimulation without models.
    Cancelli A; Cottone C; Tecchio F; Truong DQ; Dmochowski J; Bikson M
    J Neural Eng; 2016 Jun; 13(3):036022. PubMed ID: 27172063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of electric field distribution in anisotropic cortical and subcortical regions under the influence of tDCS.
    Shahid S; Wen P; Ahfock T
    Bioelectromagnetics; 2014 Jan; 35(1):41-57. PubMed ID: 24122951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking transcranial electrical stimulation finite element models: a comparison study.
    Indahlastari A; Chauhan M; Sadleir RJ
    J Neural Eng; 2019 Apr; 16(2):026019. PubMed ID: 30605892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the electric field in the brain during transcranial direct current stimulation: A sensitivity analysis.
    Santos L; Martinho M; Salvador R; Wenger C; Fernandes SR; Ripolles O; Ruffini G; Miranda PC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1778-1781. PubMed ID: 28268672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive current-flow models of ECT: Explaining individual static impedance, dynamic impedance, and brain current density.
    Unal G; Swami JK; Canela C; Cohen SL; Khadka N; FallahRad M; Short B; Argyelan M; Sackeim HA; Bikson M
    Brain Stimul; 2021; 14(5):1154-1168. PubMed ID: 34332156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation.
    Seo H; Jun SC
    Brain Stimul; 2019; 12(2):275-289. PubMed ID: 30449635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the importance of precise electrode placement for targeted transcranial electric stimulation.
    Opitz A; Yeagle E; Thielscher A; Schroeder C; Mehta AD; Milham MP
    Neuroimage; 2018 Nov; 181():560-567. PubMed ID: 30010008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the importance of electrode parameters for shaping electric field patterns generated by tDCS.
    Saturnino GB; Antunes A; Thielscher A
    Neuroimage; 2015 Oct; 120():25-35. PubMed ID: 26142274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation.
    Minjoli S; Saturnino GB; Blicher JU; Stagg CJ; Siebner HR; Antunes A; Thielscher A
    Neuroimage Clin; 2017; 15():106-117. PubMed ID: 28516033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.