These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25569990)

  • 1. Suitability of SU-8, EpoClad and EpoCore for flexible waveguides on implantable neural probes.
    Fiedler E; Haas N; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():438-41. PubMed ID: 25569990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An implantable, miniaturized SU-8 optical probe for optogenetics-based deep brain stimulation.
    Fan B; Kwon KY; Weber AJ; Li W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():450-3. PubMed ID: 25569993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A polymer-based neural microimplant for optogenetic applications: design and first in vivo study.
    Rubehn B; Wolff SB; Tovote P; Lüthi A; Stieglitz T
    Lab Chip; 2013 Feb; 13(4):579-88. PubMed ID: 23306183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and fabrication of SU-8 polymer arrayed waveguide gratings based on flexible PDMS substrates.
    Li H; Wang Y; Sun Y; Zhang S; An Z; Zhang S; Zhang C; Zhang Z; Mao Q; Prades García JD
    Appl Opt; 2022 Mar; 61(9):2213-2218. PubMed ID: 35333236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymeric waveguides with embedded micro-mirrors formed by Metallic Hard Mold.
    Dou X; Wang X; Huang H; Lin X; Ding D; Pan DZ; Chen RT
    Opt Express; 2010 Jan; 18(1):378-85. PubMed ID: 20173857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and Characterization of PDMS Waveguides for Flexible Optrodes.
    Rudmann L; Scholz D; Alt MT; Dieter A; Fiedler E; Moser T; Stieglitz T
    Adv Healthc Mater; 2024 Jun; 13(16):e2304513. PubMed ID: 38608269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SU-8-based flexible amperometric device with IDA electrodes to regenerate redox species in small spaces.
    Kanno Y; Goto T; Ino K; Inoue KY; Takahashi Y; Shiku H; Matsue T
    Anal Sci; 2014; 30(2):305-9. PubMed ID: 24521920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-chip, planar integration of Er doped silicon-rich silicon nitride microdisk with SU-8 waveguide with sub-micron gap control.
    Chang JS; Eom SC; Sung GY; Shin JH
    Opt Express; 2009 Dec; 17(25):22918-24. PubMed ID: 20052219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon optrode array with monolithically integrated SU-8 waveguide and single LED light source.
    Ryu D; Lee Y; Lee Y; Lee Y; Hwang S; Kim YK; Jun SB; Lee HW; Ji CH
    J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35797969
    [No Abstract]   [Full Text] [Related]  

  • 11. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion.
    Lo MC; Wang S; Singh S; Damodaran VB; Kaplan HM; Kohn J; Shreiber DI; Zahn JD
    Biomed Microdevices; 2015 Apr; 17(2):34. PubMed ID: 25681971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible thin-film polymer waveguides fabricated in an industrial roll-to-roll process.
    Bruck R; Muellner P; Kataeva N; Koeck A; Trassl S; Rinnerbauer V; Schmidegg K; Hainberger R
    Appl Opt; 2013 Jul; 52(19):4510-4. PubMed ID: 23842245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-density optrodes for multi-scale electrophysiology and optogenetic stimulation.
    Chamanzar M; Borysov M; Maharbiz MM; Blanche TJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6838-41. PubMed ID: 25571567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid prototyping of PDMS devices using SU-8 lithography.
    Jenkins G
    Methods Mol Biol; 2013; 949():153-68. PubMed ID: 23329442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing.
    Lin X; Ling T; Subbaraman H; Guo LJ; Chen RT
    Opt Express; 2013 Jan; 21(2):2110-7. PubMed ID: 23389191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neural tissue around SU-8 implants: A quantitative in vivo biocompatibility study.
    Márton G; Tóth EZ; Wittner L; Fiáth R; Pinke D; Orbán G; Meszéna D; Pál I; Győri EL; Bereczki Z; Kandrács Á; Hofer KT; Pongrácz A; Ulbert I; Tóth K
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110870. PubMed ID: 32409039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interlayer directional coupling thermo-optic waveguide switches based on functionalized epoxy-crosslinking polymers.
    Yue J; Wang C; Lin H; Ding S; Shi Z; Cui Z; Chen C; Zhang D
    Opt Express; 2022 Apr; 30(9):13931-13941. PubMed ID: 35473147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal optogenetic neural interfacing device fabricated by scalable optical fiber drawing technique.
    Davey CJ; Argyros A; Fleming SC; Solomon SG
    Appl Opt; 2015 Dec; 54(34):10068-72. PubMed ID: 26836662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SU-8-based nanocomposites for acoustical matching layer.
    Wang S; Campistron P; Carlier J; Callens-Debavelaere D; Nongaillard B; NDieguene A; Nassar G; Soyer C; Zhao X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1483-9. PubMed ID: 19574159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfabricated polymer chip with integrated U-bend waveguides for evanescent field absorption based detection.
    Prabhakar A; Mukherji S
    Lab Chip; 2010 Mar; 10(6):748-54. PubMed ID: 20221563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.