These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 25569999)

  • 1. Bio-impedance characterization technique with implantable neural stimulator using biphasic current stimulus.
    Lo YK; Chang CW; Liu W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():474-7. PubMed ID: 25569999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Offset prediction for charge-balanced stimulus waveforms.
    Woods VM; Triantis IF; Toumazou C
    J Neural Eng; 2011 Aug; 8(4):046032. PubMed ID: 21753229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electrode-impedance-aware neurostimulator IC that achieves low-power consumption and fast charge balance.
    Shi Y; Chang Q; Liu X
    J Neurosci Methods; 2024 Apr; 404():110058. PubMed ID: 38215949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 16-Channel biphasic current-mode programmable charge balanced neural stimulation.
    Li X; Zhong S; Morizio J
    Biomed Eng Online; 2017 Aug; 16(1):104. PubMed ID: 28806960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Chronopotentiometry to Better Characterize the Charge Injection Mechanisms of Platinum Electrodes Used in Bionic Devices.
    Harris AR; Newbold C; Carter P; Cowan R; Wallace GG
    Front Neurosci; 2019; 13():380. PubMed ID: 31118879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo.
    Wei XF; Grill WM
    J Neural Eng; 2009 Aug; 6(4):046008. PubMed ID: 19587394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.
    Hsu WY; Schmid A
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):878-888. PubMed ID: 28715337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of a multi-electrode array for spinal cord epidural stimulation.
    Chang CW; Lo YK; Gad P; Edgerton R; Liu W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6834-7. PubMed ID: 25571566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fitting the determined impedance in the guinea pig inner ear to Randles circuit using square error minimization in the range of 100 Hz to 50 kHz.
    Pleshkov MO; D'Alessandro S; Svetlik MV; Starkov DN; Zaitsev VA; Handler M; Baumgarten D; Saba R; van de Berg R; Demkin VP; Kingma H
    Biomed Phys Eng Express; 2022 Jan; 8(2):. PubMed ID: 35042198
    [No Abstract]   [Full Text] [Related]  

  • 10. Skin Impedance Estimation System for Voltage-mode Electrical Stimulator with an AC Bridge Circuit.
    Matsui H; Ohnishi K; Cho SG
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A time domain finite element model of extracellular neural stimulation predicts that non-rectangular stimulus waveforms may offer safety benefits.
    Cantrell DR; Troy JB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2768-71. PubMed ID: 19163279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical characterization of high frequency stimulation electrodes: role of electrode material and stimulation parameters on electrode polarization.
    Ghazavi A; Cogan SF
    J Neural Eng; 2018 Jun; 15(3):036023. PubMed ID: 29205176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Capacitive" pulse shapes for platinum cuff electrodes.
    Woods VM; Triantis IF; Agathos C; Toumazou C
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5408-11. PubMed ID: 22255560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants.
    Newbold C; Richardson R; Huang CQ; Milojevic D; Cowan R; Shepherd R
    J Neural Eng; 2004 Dec; 1(4):218-27. PubMed ID: 15876642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedance measures for a better understanding of the electrical stimulation of the inner ear.
    Mesnildrey Q; Macherey O; Herzog P; Venail F
    J Neural Eng; 2019 Feb; 16(1):016023. PubMed ID: 30523898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation.
    Vargas Luna JL; Krenn M; Cortés Ramírez JA; Mayr W
    PLoS One; 2015; 10(5):e0125609. PubMed ID: 25942010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harmonic-balance circuit analysis for electro-neural interfaces.
    Chen ZC; Wang BY; Palanker D
    J Neural Eng; 2020 Jun; 17(3):035001. PubMed ID: 32299074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction in excitability of the auditory nerve following acute electrical stimulation at high stimulus rates: III. Capacitive versus non-capacitive coupling of the stimulating electrodes.
    Huang CQ; Shepherd RK; Seligman PM; Clark GM
    Hear Res; 1998 Feb; 116(1-2):55-64. PubMed ID: 9508028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Access resistance of stimulation electrodes as a function of electrode proximity to the retina.
    Majdi JA; Minnikanti S; Peixoto N; Agrawal A; Cohen ED
    J Neural Eng; 2015 Feb; 12(1):016006. PubMed ID: 25474329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrode-electrolyte interface properties in implantation conditions.
    Riistama J; Lekkala J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6021-4. PubMed ID: 17946736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.