These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 25569999)

  • 21. An Implantable Versatile Electrode-Driving ASIC for Chronic Epidural Stimulation in Rats.
    Giagka V; Eder C; Donaldson N; Demosthenous A
    IEEE Trans Biomed Circuits Syst; 2015 Jun; 9(3):387-400. PubMed ID: 25134089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells.
    de Asis ED; Leung J; Wood S; Nguyen CV
    Nanotechnology; 2010 Mar; 21(12):125101. PubMed ID: 20182008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Multichannel High-Frequency Power-Isolated Neural Stimulator With Crosstalk Reduction.
    Jiang D; Demosthenous A
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):940-953. PubMed ID: 29993559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A fully implantable stimulator for use in small laboratory animals.
    Millard RE; Shepherd RK
    J Neurosci Methods; 2007 Nov; 166(2):168-77. PubMed ID: 17897719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parylene-based implantable platinum-black coated wire microelectrode for orbicularis oculi muscle electrical stimulation.
    Rui YF; Liu JQ; Yang B; Li KY; Yang CS
    Biomed Microdevices; 2012 Apr; 14(2):367-73. PubMed ID: 22124887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Factors affecting the stimulus artifact tail in surface-recorded somatosensory-evoked potentials.
    Hua Y; Lovely DF; Doraiswami R
    Med Biol Eng Comput; 2006 Mar; 44(3):226-41. PubMed ID: 16937164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrical properties of retinal-electrode interface.
    Shah S; Hines A; Zhou D; Greenberg RJ; Humayun MS; Weiland JD
    J Neural Eng; 2007 Mar; 4(1):S24-9. PubMed ID: 17325413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A multi-channel stimulator and electrode array providing a rotating current whirlpool for electrical stimulation of wounds.
    Petrofsky J; Suh HJ; Fish A; Hernandez V; Abdo A; Collins K; Mendoza E; Yang TN
    J Med Eng Technol; 2008; 32(5):371-84. PubMed ID: 18821415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Faradic resistance of the electrode/electrolyte interface.
    Mayer S; Geddes LA; Bourland JD; Ogborn L
    Med Biol Eng Comput; 1992 Sep; 30(5):538-42. PubMed ID: 1293446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards a Switched-Capacitor based Stimulator for efficient deep-brain stimulation.
    Vidal J; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2927-30. PubMed ID: 21095987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A charge-metering method for voltage-mode neural stimulation.
    Luan S; Constandinou TG
    J Neurosci Methods; 2014 Mar; 224():39-47. PubMed ID: 24360970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Hybrid Bipolar Active Charge Balancing Technique with Adaptive Electrode Tissue Interface (ETI) Impedance Variations for Facial Paralysis Patients.
    Moganti GLK; Siva Praneeth VN; Vanjari SRK
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling the surface phenomena in carbon paste electrodes by low frequency impedance and double-layer capacitance measurements.
    Savitri D; Mitra CK
    Bioelectrochem Bioenerg; 1999 Feb; 48(1):163-9. PubMed ID: 10228583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A voltage-controlled current source with regulated electrode bias-voltage for safe neural stimulation.
    Schuettler M; Franke M; Krueger TB; Stieglitz T
    J Neurosci Methods; 2008 Jun; 171(2):248-52. PubMed ID: 18471890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes.
    Weiland JD; Anderson DJ; Humayun MS
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1574-9. PubMed ID: 12549739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical and Electrophysiological Performance of Platinum Electrodes Within the Ninety-Nine-Electrode Stimulating Nerve Cuff.
    Pečlin P; Mehle A; Karpe B; Rozman J
    Artif Organs; 2015 Oct; 39(10):886-96. PubMed ID: 26471140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved chronic neural stimulation using high surface area platinum electrodes.
    Shah KG; Tolosa VM; Tooker AC; Felix SH; Pannu SS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1546-9. PubMed ID: 24109995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increasing signal amplitude in electrical impedance tomography of neural activity using a parallel resistor inductor capacitor (RLC) circuit.
    Hope J; Aqrawe Z; Lim M; Vanholsbeeck F; McDaid A
    J Neural Eng; 2019 Nov; 16(6):066041. PubMed ID: 31536974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chronic neural stimulation with thin-film, iridium oxide electrodes.
    Weiland JD; Anderson DJ
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):911-8. PubMed ID: 10916262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.