These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25570058)

  • 1. Implementing spiking neuron model and spike-timing-dependent plasticity with generalized Laguerre-Volterra models.
    Song D; Robinson BS; Granacki JJ; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():714-7. PubMed ID: 25570058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laguerre-Volterra identification of spike-timing-dependent plasticity from spiking activity: a simulation study.
    Robinson BS; Song D; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5578-81. PubMed ID: 24111001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized Volterra kernel model identification of spike-timing-dependent plasticity from simulated spiking activity.
    Robinson BS; Song D; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6585-8. PubMed ID: 25571505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of functional synaptic plasticity from spiking activities using nonlinear dynamical modeling.
    Song D; Chan RH; Robinson BS; Marmarelis VZ; Opris I; Hampson RE; Deadwyler SA; Berger TW
    J Neurosci Methods; 2015 Apr; 244():123-35. PubMed ID: 25280984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparse generalized Laguerre-Volterra model of neural population dynamics.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4555-8. PubMed ID: 19963836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What can a neuron learn with spike-timing-dependent plasticity?
    Legenstein R; Naeger C; Maass W
    Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. System identification of point-process neural systems using probability based Volterra kernels.
    Sandler RA; Deadwyler SA; Hampson RE; Song D; Berger TW; Marmarelis VZ
    J Neurosci Methods; 2015 Jan; 240():179-92. PubMed ID: 25479231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analog low-power hardware implementation of a Laguerre-Volterra model of intracellular subthreshold neuronal activity.
    Ghaderi VS; Roach S; Song D; Marmarelis VZ; Choma J; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():767-70. PubMed ID: 23366005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear model of single hippocampal neurons with dynamical thresholds.
    Lu U; Song D; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3330-4. PubMed ID: 19964070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions.
    Xu S; Li Y; Guo Q; Yang XF; Chan RHM
    J Neurosci Methods; 2017 Feb; 278():46-56. PubMed ID: 28062244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear modeling of causal interrelationships in neuronal ensembles.
    Zanos TP; Courellis SH; Berger TW; Hampson RE; Deadwyler SA; Marmarelis VZ
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):336-52. PubMed ID: 18701382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sparse generalized volterra model of human hippocampal spike train transformation for memory prostheses.
    Song D; Robinson BS; Hampson RE; Marmarelis VZ; Deadwyler SA; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3961-4. PubMed ID: 26737161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methodology of Recurrent Laguerre-Volterra Network for Modeling Nonlinear Dynamic Systems.
    Geng K; Marmarelis VZ
    IEEE Trans Neural Netw Learn Syst; 2017 Sep; 28(9):2196-2208. PubMed ID: 27352401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonstationary modeling of neural population dynamics.
    Chan RH; Song D; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4559-62. PubMed ID: 19963837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time prediction of neuronal population spiking activity using FPGA.
    Li WX; Cheung RC; Chan RH; Song D; Berger TW
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):489-98. PubMed ID: 23893208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike-timing dependent synaptic plasticity: a phenomenological framework.
    Kistler WM
    Biol Cybern; 2002 Dec; 87(5-6):416-27. PubMed ID: 12461631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ASIC Implementation of a Nonlinear Dynamical Model for Hippocampal Prosthesis.
    Qiao Z; Han Y; Han X; Xu H; Li WXY; Song D; Berger TW; Cheung RCC
    Neural Comput; 2018 Sep; 30(9):2472-2499. PubMed ID: 29949460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From spiking neurons to rate models: a cascade model as an approximation to spiking neuron models with refractoriness.
    Aviel Y; Gerstner W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051908. PubMed ID: 16802968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A K-Medoids based Point-Process Modeling on Neural Spike Transformation using Binless Kernel.
    Qian C; Sun X; Yang Z; Pan G; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4387-4390. PubMed ID: 31946839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.