These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25570075)

  • 1. Complex micropatterning of proteins within microfluidic channels.
    Kim M; Doh J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():782-5. PubMed ID: 25570075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PDMS bonding to a bio-friendly photoresist via self-polymerized poly(dopamine) adhesive for complex protein micropatterning inside microfluidic channels.
    Kim M; Song KH; Doh J
    Colloids Surf B Biointerfaces; 2013 Dec; 112():134-8. PubMed ID: 23973671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addressable micropatterning of multiple proteins and cells by microscope projection photolithography based on a protein friendly photoresist.
    Kim M; Choi JC; Jung HR; Katz JS; Kim MG; Doh J
    Langmuir; 2010 Jul; 26(14):12112-8. PubMed ID: 20565061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photopatterning with a printed transparency mask and a protein-friendly photoresist.
    Kang J; Choi JC; Kim M; Jung HR; Doh J
    Methods Cell Biol; 2014; 119():55-72. PubMed ID: 24439279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable nonpolar solvent droplet generation using a poly(dimethylsiloxane) microfluidic channel coated with poly-p-xylylene for a nanoparticle growth.
    Lim H; Moon S
    Biomed Microdevices; 2015 Aug; 17(4):70. PubMed ID: 26112614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip bioassay using immobilized sensing bacteria in three-dimensional microfluidic network.
    Tani H; Maehana K; Kamidate T
    Methods Mol Biol; 2007; 385():37-52. PubMed ID: 18365703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of PDMS-modified glass from cast-and-peel fabrication.
    Liu K; Tian Y; Pitchimani R; Huang M; Lincoln H; Pappas D
    Talanta; 2009 Jul; 79(2):333-8. PubMed ID: 19559887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK; Ng WY; Mahabadi KA; Liang YN; RodrĂ­guez I
    Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micropatterning with a liquid crystal display (LCD) projector.
    Itoga K; Kobayashi J; Yamato M; Okano T
    Methods Cell Biol; 2014; 119():141-58. PubMed ID: 24439283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile preparation of protein stationary phase based on polydopamine/graphene oxide platform for chip-based open tubular capillary electrochromatography enantioseparation.
    Liang RP; Wang XN; Liu CM; Meng XY; Qiu JD
    J Chromatogr A; 2014 Jan; 1323():135-42. PubMed ID: 24331371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Durable, region-specific protein patterning in microfluidic channels.
    Fiddes LK; Chan HK; Lau B; Kumacheva E; Wheeler AR
    Biomaterials; 2010 Jan; 31(2):315-20. PubMed ID: 19800682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoliter dispensing method by degassed poly(dimethylsiloxane) microchannels and its application in protein crystallization.
    Zhou X; Lau L; Lam WW; Au SW; Zheng B
    Anal Chem; 2007 Jul; 79(13):4924-30. PubMed ID: 17547370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A soft lithographic approach to fabricate patterned microfluidic channels.
    Khademhosseini A; Suh KY; Jon S; Eng G; Yeh J; Chen GJ; Langer R
    Anal Chem; 2004 Jul; 76(13):3675-81. PubMed ID: 15228340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices.
    Lee JN; Park C; Whitesides GM
    Anal Chem; 2003 Dec; 75(23):6544-54. PubMed ID: 14640726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteins modification of poly(dimethylsiloxane) microfluidic channels for the enhanced microchip electrophoresis.
    Wang AJ; Xu JJ; Chen HY
    J Chromatogr A; 2006 Feb; 1107(1-2):257-64. PubMed ID: 16387312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting.
    Hu S; Ren X; Bachman M; Sims CE; Li GP; Allbritton N
    Anal Chem; 2002 Aug; 74(16):4117-23. PubMed ID: 12199582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring the surface properties of poly(dimethylsiloxane) microfluidic devices.
    Hu S; Ren X; Bachman M; Sims CE; Li GP; Allbritton NL
    Langmuir; 2004 Jun; 20(13):5569-74. PubMed ID: 15986702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro magnetic stir-bar mixer integrated with parylene microfluidic channels.
    Ryu KS; Shaikh K; Goluch E; Fan Z; Liu C
    Lab Chip; 2004 Dec; 4(6):608-13. PubMed ID: 15570373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifouling properties of poly(dimethylsiloxane) surfaces modified with quaternized poly(dimethylaminoethyl methacrylate).
    Tu Q; Wang JC; Liu R; He J; Zhang Y; Shen S; Xu J; Liu J; Yuan MS; Wang J
    Colloids Surf B Biointerfaces; 2013 Feb; 102():361-70. PubMed ID: 23006574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The deformation of flexible PDMS microchannels under a pressure driven flow.
    Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H
    Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.