These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25570112)

  • 1. Comparison of sleep-wake classification using electroencephalogram and wrist-worn multi-modal sensor data.
    Sano A; Picard RW
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():930-3. PubMed ID: 25570112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multisite accelerometry for sleep and wake classification in children.
    Lamprecht ML; Bradley AP; Tran T; Boynton A; Terrill PI
    Physiol Meas; 2015 Jan; 36(1):133-47. PubMed ID: 25514194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wrist actigraphic measures of sleep and rhythms.
    Kripke DF; Mullaney DJ; Messin S; Wyborney VG
    Electroencephalogr Clin Neurophysiol; 1978 May; 44(5):674-6. PubMed ID: 77772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Sleep Quality Assessment Using Wearable Sensors by Including Information From Postural/Sleep Position Changes and Body Acceleration: A Comparison of Chest-Worn Sensors, Wrist Actigraphy, and Polysomnography.
    Razjouyan J; Lee H; Parthasarathy S; Mohler J; Sharafkhaneh A; Najafi B
    J Clin Sleep Med; 2017 Nov; 13(11):1301-1310. PubMed ID: 28992827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How accurately does wrist actigraphy identify the states of sleep and wakefulness?
    Pollak CP; Tryon WW; Nagaraja H; Dzwonczyk R
    Sleep; 2001 Dec; 24(8):957-65. PubMed ID: 11766166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a sleep staging classification model for healthy adults based on two combinations of a single-channel EEG headband and wrist actigraphy.
    Melo MC; da Silva Vallim JR; Garbuio S; Soster LA; Sousa KMM; Bonaldi RR; Pires GN
    J Clin Sleep Med; 2024 Jun; 20(6):983-990. PubMed ID: 38427322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of artificial dawn on sleep inertia, skin temperature, and the awakening cortisol response.
    Van De Werken M; Giménez MC; De Vries B; Beersma DG; Van Someren EJ; Gordijn MC
    J Sleep Res; 2010 Sep; 19(3):425-35. PubMed ID: 20408928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal correlation between two channels EEG of bipolar lead in the head midline is associated with sleep-wake stages.
    Li Y; Tang X; Xu Z; Liu W; Li J
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):147-55. PubMed ID: 26934877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic identification of sleep and wakefulness using single-channel EEG and respiratory polygraphy signals for the diagnosis of obstructive sleep apnea.
    Sabil A; Vanbuis J; Baffet G; Feuilloy M; Le Vaillant M; Meslier N; Gagnadoux F
    J Sleep Res; 2019 Apr; 28(2):e12795. PubMed ID: 30478923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase relationship between skin temperature and sleep-wake rhythms in women with vascular dysregulation and controls under real-life conditions.
    Gompper B; Bromundt V; Orgül S; Flammer J; Kräuchi K
    Chronobiol Int; 2010 Oct; 27(9-10):1778-96. PubMed ID: 20969523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting Sleep and Nonwear in 24-h Wrist Accelerometer Data from the National Health and Nutrition Examination Survey.
    Thapa-Chhetry B; Arguello DJ; John D; Intille S
    Med Sci Sports Exerc; 2022 Nov; 54(11):1936-1946. PubMed ID: 36007161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian rhythm of wrist temperature in normal-living subjects A candidate of new index of the circadian system.
    Sarabia JA; Rol MA; Mendiola P; Madrid JA
    Physiol Behav; 2008 Nov; 95(4):570-80. PubMed ID: 18761026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A hypothesis on the nature of electrodermal reactions].
    Dementienko VV; Dorokhov VB; Koreneva LG; Markov AG; Tarasov AV; Shakhnarovich VM
    Fiziol Cheloveka; 2000; 26(2):124-31. PubMed ID: 10816949
    [No Abstract]   [Full Text] [Related]  

  • 14. Electrodermal activity patterns in sleep stages and their utility for sleep versus wake classification.
    Herlan A; Ottenbacher J; Schneider J; Riemann D; Feige B
    J Sleep Res; 2019 Apr; 28(2):e12694. PubMed ID: 29722079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of wrist electrodermal activity during sleep.
    Sano A; Picard RW; Stickgold R
    Int J Psychophysiol; 2014 Dec; 94(3):382-9. PubMed ID: 25286449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Issues of validity in actigraphic sleep assessment.
    Tryon WW
    Sleep; 2004 Feb; 27(1):158-65. PubMed ID: 14998254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is it on? An algorithm for discerning wrist-accelerometer non-wear times from sleep/wake activity.
    Kosmadopoulos A; Darwent D; Roach GD
    Chronobiol Int; 2016; 33(6):599-603. PubMed ID: 27096291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involuntary sleep during civil air operations: wrist activity and the prevention of sleep.
    Wright N; McGown A
    Aviat Space Environ Med; 2004 Jan; 75(1):37-45. PubMed ID: 14736131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep-wake transition in narcolepsy and healthy controls using a support vector machine.
    Jensen JB; Sorensen HB; Kempfner J; Sørensen GL; Knudsen S; Jennum P
    J Clin Neurophysiol; 2014 Oct; 31(5):397-401. PubMed ID: 25271675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An activity-based sleep monitor system for ambulatory use.
    Webster JB; Kripke DF; Messin S; Mullaney DJ; Wyborney G
    Sleep; 1982; 5(4):389-99. PubMed ID: 7163726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.