These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25570136)

  • 1. Brain functional networks extraction based on fMRI artifact removal: Single subject and group approaches.
    Du Y; Allen EA; He H; Sui J; Calhoun VD
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1026-9. PubMed ID: 25570136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artifact removal in the context of group ICA: A comparison of single-subject and group approaches.
    Du Y; Allen EA; He H; Sui J; Wu L; Calhoun VD
    Hum Brain Mapp; 2016 Mar; 37(3):1005-25. PubMed ID: 26859308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of IVA and GIG-ICA in Brain Functional Network Estimation Using fMRI Data.
    Du Y; Lin D; Yu Q; Sui J; Chen J; Rachakonda S; Adali T; Calhoun VD
    Front Neurosci; 2017; 11():267. PubMed ID: 28579940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Group information guided ICA for fMRI data analysis.
    Du Y; Fan Y
    Neuroimage; 2013 Apr; 69():157-97. PubMed ID: 23194820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI.
    Pruim RHR; Mennes M; Buitelaar JK; Beckmann CF
    Neuroimage; 2015 May; 112():278-287. PubMed ID: 25770990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Group ICA for identifying biomarkers in schizophrenia: 'Adaptive' networks via spatially constrained ICA show more sensitivity to group differences than spatio-temporal regression.
    Salman MS; Du Y; Lin D; Fu Z; Fedorov A; Damaraju E; Sui J; Chen J; Mayer AR; Posse S; Mathalon DH; Ford JM; Van Erp T; Calhoun VD
    Neuroimage Clin; 2019; 22():101747. PubMed ID: 30921608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time EEG artifact correction during fMRI using ICA.
    Mayeli A; Zotev V; Refai H; Bodurka J
    J Neurosci Methods; 2016 Dec; 274():27-37. PubMed ID: 27697458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data.
    Glasser MF; Coalson TS; Bijsterbosch JD; Harrison SJ; Harms MP; Anticevic A; Van Essen DC; Smith SM
    Neuroimage; 2018 Nov; 181():692-717. PubMed ID: 29753843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SMART (splitting-merging assisted reliable) Independent Component Analysis for Brain Functional Networks.
    Du Y; He X; Calhoun VD
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3263-3266. PubMed ID: 34891937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms.
    Xie J; Douglas PK; Wu YN; Brody AL; Anderson AE
    J Neurosci Methods; 2017 Apr; 282():81-94. PubMed ID: 28322859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Method for Multi-subject fMRI Data Analysis: Independent Component Analysis with Clustering Embedded (ICA-CE).
    Du Y; Zhu W; Zhang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data.
    Pruim RHR; Mennes M; van Rooij D; Llera A; Buitelaar JK; Beckmann CF
    Neuroimage; 2015 May; 112():267-277. PubMed ID: 25770991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of multi-subject ICA methods for analysis of fMRI data.
    Erhardt EB; Rachakonda S; Bedrick EJ; Allen EA; Adali T; Calhoun VD
    Hum Brain Mapp; 2011 Dec; 32(12):2075-95. PubMed ID: 21162045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards data-driven group inferences of resting-state fMRI data in rodents: Comparison of group ICA, GIG-ICA, and IVA-GL.
    To XV; Vegh V; Nasrallah FA
    J Neurosci Methods; 2022 Jan; 366():109411. PubMed ID: 34793852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG artifact elimination by extraction of ICA-component features using image processing algorithms.
    Radüntz T; Scouten J; Hochmuth O; Meffert B
    J Neurosci Methods; 2015 Mar; 243():84-93. PubMed ID: 25666892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of BCG artifact removal methods for evoked responses in simultaneous EEG-fMRI.
    Shams N; Alain C; Strother S
    J Neurosci Methods; 2015 Apr; 245():137-46. PubMed ID: 25721269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Correlation for Link Definition in Resting-State fMRI Brain Networks Can Reduce Motion-Related Artifacts.
    Burkhardt M; Thiel CM; Gießing C
    Brain Connect; 2022 Feb; 12(1):18-25. PubMed ID: 34269612
    [No Abstract]   [Full Text] [Related]  

  • 19. A method for accurate group difference detection by constraining the mixing coefficients in an ICA framework.
    Sui J; Adali T; Pearlson GD; Clark VP; Calhoun VD
    Hum Brain Mapp; 2009 Sep; 30(9):2953-70. PubMed ID: 19172631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evaluation of independent component analyses with an application to resting-state fMRI.
    Risk BB; Matteson DS; Ruppert D; Eloyan A; Caffo BS
    Biometrics; 2014 Mar; 70(1):224-36. PubMed ID: 24350655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.