These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25570173)

  • 1. Platform for the study of virtual task-oriented motion and its evaluation by EEG and EMG biopotentials.
    Figueroa-Garcia I; Aguilar-Leal O; Hernandez-Reynoso AG; Madrigal J; Fuentes RQ; Huegel JC; Garcia-Gonzalez A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1174-7. PubMed ID: 25570173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Evaluation of EEG/EMG Fusion Methods for Motion Classification.
    Tryon J; Friedman E; Trejos AL
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():971-976. PubMed ID: 31374755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on Brain Electromyography Rehabilitation System Based on Data Fusion and Virtual Rehabilitation Simulation.
    Li S; Yang J
    J Med Syst; 2019 Jan; 43(2):22. PubMed ID: 30604024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-machine interfaces based on EMG and EEG applied to robotic systems.
    Ferreira A; Celeste WC; Cheein FA; Bastos-Filho TF; Sarcinelli-Filho M; Carelli R
    J Neuroeng Rehabil; 2008 Mar; 5():10. PubMed ID: 18366775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control.
    Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Position and stiffness modulation of a wrist haptic device using myoelectric interface.
    Antuvan CW; Masia L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():734-739. PubMed ID: 28813907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals.
    Jiang J; Zhou Z; Yin E; Yu Y; Hu D
    Biomed Mater Eng; 2014; 24(6):2919-25. PubMed ID: 25226998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the performance of brain-computer interface through meditation practicing.
    Eskandari P; Erfanian A
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():662-5. PubMed ID: 19162742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple EMG-driven musculoskeletal model enables consistent control performance during path tracing tasks.
    Crouch D; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1-4. PubMed ID: 28268266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated AMLAB-based system for acquisition, processing and analysis of evoked EMG and mechanical responses of upper limb muscles.
    Jaberzadeh S; Nazeran H; Scutter S; Warden-Flood A
    Australas Phys Eng Sci Med; 2003 Jun; 26(2):70-8. PubMed ID: 12956188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless biopotential acquisition system for portable healthcare monitoring.
    Wang WS; Huang HY; Wu ZC; Chen SC; Wang WF; Wu CF; Luo CH
    J Med Eng Technol; 2011 Jul; 35(5):254-61. PubMed ID: 21619420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual Rehabilitation Training System Based on Surface EMG Feature Extraction and Analysis.
    Meng Q; Zhang J; Yang X
    J Med Syst; 2019 Jan; 43(3):48. PubMed ID: 30666419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of using combined EMG and kinematic signals for prosthesis control: A simulation study using a virtual reality environment.
    Blana D; Kyriacou T; Lambrecht JM; Chadwick EK
    J Electromyogr Kinesiol; 2016 Aug; 29():21-7. PubMed ID: 26190031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of isometric contractions based on High Density EMG maps.
    Rojas-Martínez M; Mañanas MA; Alonso JF; Merletti R
    J Electromyogr Kinesiol; 2013 Feb; 23(1):33-42. PubMed ID: 22819519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of EEG and EMG combined virtual reality gaming system in facial palsy rehabilitation - A case report.
    Qidwai U; Ajimsha MS; Shakir M
    J Bodyw Mov Ther; 2019 Apr; 23(2):425-431. PubMed ID: 31103130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biceps brachii can add to performance of tasks requiring supination in cerebral palsy patients.
    de Bruin M; Veeger HE; Kreulen M; Smeulders MJ; Bus SA
    J Electromyogr Kinesiol; 2013 Apr; 23(2):516-22. PubMed ID: 23218229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A detection scheme for frontalis and temporalis muscle EMG contamination of EEG data.
    Fu MJ; Daly JJ; Cavuşoğlu MC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4514-8. PubMed ID: 17946635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiclass voluntary facial expression classification based on Filter Bank Common Spatial Pattern.
    Chin ZY; Ang KK; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1005-8. PubMed ID: 19162828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the Intent to Interact With VR Using Physiological Features.
    Nguyen W; Gramann K; Gehrke L
    IEEE Trans Vis Comput Graph; 2024 Aug; 30(8):5893-5900. PubMed ID: 37624723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.