These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 25570191)
61. Functional electrical stimulation early after stroke improves lower limb motor function and ability in activities of daily living. You G; Liang H; Yan T NeuroRehabilitation; 2014; 35(3):381-9. PubMed ID: 25227538 [TBL] [Abstract][Full Text] [Related]
62. An approach to improve the performance of subject-independent BCIs-based on motor imagery allocating subjects by gender. Cantillo-Negrete J; Gutierrez-Martinez J; Carino-Escobar RI; Carrillo-Mora P; Elias-Vinas D Biomed Eng Online; 2014 Dec; 13():158. PubMed ID: 25476924 [TBL] [Abstract][Full Text] [Related]
63. Effect of normal-walking-pattern-based functional electrical stimulation on gait of the lower extremity in subjects with ischemic stroke: A self controlled study. Xu B; Yan T; Yang Y; Ou R; Huang S NeuroRehabilitation; 2016; 38(2):163-9. PubMed ID: 26889732 [TBL] [Abstract][Full Text] [Related]
64. Development of a universal control unit for functional electrical stimulation (FES). Brandell BR Am J Phys Med; 1982 Dec; 61(6):279-301. PubMed ID: 6983299 [TBL] [Abstract][Full Text] [Related]
65. Effectiveness of Neuromuscular Electrical Stimulation on Lower Limbs of Patients With Hemiplegia After Chronic Stroke: A Systematic Review. Hong Z; Sui M; Zhuang Z; Liu H; Zheng X; Cai C; Jin D Arch Phys Med Rehabil; 2018 May; 99(5):1011-1022.e1. PubMed ID: 29357280 [TBL] [Abstract][Full Text] [Related]
66. EEG-Controlled Functional Electrical Stimulation Therapy With Automated Grasp Selection: A Proof-of-Concept Study. Likitlersuang J; Koh R; Gong X; Jovanovic L; Bolivar-Tellería I; Myers M; Zariffa J; Márquez-Chin C Top Spinal Cord Inj Rehabil; 2018; 24(3):265-274. PubMed ID: 29997429 [No Abstract] [Full Text] [Related]
67. Decoding Upper Limb Movement Attempt From EEG Measurements of the Contralesional Motor Cortex in Chronic Stroke Patients. Antelis JM; Montesano L; Ramos-Murguialday A; Birbaumer N; Minguez J IEEE Trans Biomed Eng; 2017 Jan; 64(1):99-111. PubMed ID: 27046866 [TBL] [Abstract][Full Text] [Related]
68. Mirror therapy combined with biofeedback functional electrical stimulation for motor recovery of upper extremities after stroke: a pilot randomized controlled trial. Kim JH; Lee BH Occup Ther Int; 2015 Jun; 22(2):51-60. PubMed ID: 25367222 [TBL] [Abstract][Full Text] [Related]
69. Prognostic and Monitory EEG-Biomarkers for BCI Upper-Limb Stroke Rehabilitation. Mane R; Chew E; Phua KS; Ang KK; Robinson N; Vinod AP; Guan C IEEE Trans Neural Syst Rehabil Eng; 2019 Aug; 27(8):1654-1664. PubMed ID: 31247558 [TBL] [Abstract][Full Text] [Related]
70. Bilateral upper limb training with functional electric stimulation in patients with chronic stroke. Chan MK; Tong RK; Chung KY Neurorehabil Neural Repair; 2009 May; 23(4):357-65. PubMed ID: 19074684 [TBL] [Abstract][Full Text] [Related]
71. A feasibility study to investigate the clinical application of functional electrical stimulation (FES), for dropped foot, during the sub-acute phase of stroke - A randomized controlled trial. Salisbury L; Shiels J; Todd I; Dennis M Physiother Theory Pract; 2013 Jan; 29(1):31-40. PubMed ID: 22524182 [TBL] [Abstract][Full Text] [Related]
72. Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation. Ang KK; Guan C; Phua KS; Wang C; Teh I; Chen CW; Chew E Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4128-31. PubMed ID: 23366836 [TBL] [Abstract][Full Text] [Related]
73. Clinically Significant Gains in Skillful Grasp Coordination by an Individual With Tetraplegia Using an Implanted Brain-Computer Interface With Forearm Transcutaneous Muscle Stimulation. Bockbrader M; Annetta N; Friedenberg D; Schwemmer M; Skomrock N; Colachis S; Zhang M; Bouton C; Rezai A; Sharma G; Mysiw WJ Arch Phys Med Rehabil; 2019 Jul; 100(7):1201-1217. PubMed ID: 30902630 [TBL] [Abstract][Full Text] [Related]
74. Motor imagery BCI for upper limb stroke rehabilitation: An evaluation of the EEG recordings using coherence analysis. Tung SW; Guan C; Ang KK; Phua KS; Wang C; Zhao L; Teo WP; Chew E Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():261-4. PubMed ID: 24109674 [TBL] [Abstract][Full Text] [Related]
76. Uncorrelated multiway discriminant analysis for motor imagery EEG classification. Liu Y; Zhao Q; Zhang L Int J Neural Syst; 2015 Jun; 25(4):1550013. PubMed ID: 25986750 [TBL] [Abstract][Full Text] [Related]
77. A small, portable, battery-powered brain-computer interface system for motor rehabilitation. McCrimmon CM; Ming Wang ; Silva Lopes L; Wang PT; Karimi-Bidhendi A; Liu CY; Heydari P; Nenadic Z; Do AH Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2776-2779. PubMed ID: 28324971 [TBL] [Abstract][Full Text] [Related]
78. A Link between the Increase in Electroencephalographic Coherence and Performance Improvement in Operating a Brain-Computer Interface. Angulo-Sherman IN; Gutiérrez D Comput Intell Neurosci; 2015; 2015():824175. PubMed ID: 26290661 [TBL] [Abstract][Full Text] [Related]
79. FES for abnormal movement of upper limb during walking in post-stroke subjects. Chou CH; Hwang YS; Chen CC; Chen SC; Lai CH; Chen YL Technol Health Care; 2014; 22(5):751-8. PubMed ID: 24990169 [TBL] [Abstract][Full Text] [Related]
80. Effects of Functional Electrical Stimulation on Reducing Falls and Improving Gait Parameters in Multiple Sclerosis and Stroke. Gervasoni E; Parelli R; Uszynski M; Crippa A; Marzegan A; Montesano A; Cattaneo D PM R; 2017 Apr; 9(4):339-347.e1. PubMed ID: 27825837 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]