These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25570253)

  • 21. Detection and adaptive cancellation of heart sound interference in tracheal sounds.
    Cortés S; Jané R; Torres A; Fiz JA; Morera J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2860-3. PubMed ID: 17946984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of Respiratory Rates Using the Built-in Microphone of a Smartphone or Headset.
    Nam Y; Reyes BA; Chon KH
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1493-1501. PubMed ID: 26415194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Instantaneous frequency based index to characterize respiratory crackles.
    Speranza CG; Moraes R
    Comput Biol Med; 2018 Nov; 102():21-29. PubMed ID: 30240835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tidal Volume and Instantaneous Respiration Rate Estimation using a Volumetric Surrogate Signal Acquired via a Smartphone Camera.
    Reyes BA; Reljin N; Kong Y; Nam Y; Chon KH
    IEEE J Biomed Health Inform; 2017 May; 21(3):764-777. PubMed ID: 26915142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tracheal and lung sounds repeatability in normal adults.
    Sánchez I; Vizcaya C
    Respir Med; 2003 Dec; 97(12):1257-60. PubMed ID: 14682403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Snoring sound classification from respiratory signal.
    Shokrollahi M; Saha S; Hadi P; Rudzicz F; Yadollahi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3215-3218. PubMed ID: 28268992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of anthropometric variations on acoustical flow estimation: proposing a novel approach for flow estimation without the need for individual calibration.
    Yadollahi A; Moussavi ZM
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1663-70. PubMed ID: 21292587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variations in respiratory sounds in relation to fluid accumulation in the upper airways.
    Yadollahi A; Rudzicz F; Montazeri A; Bradley TD
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2924-7. PubMed ID: 24110339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acoustic sensor versus electrocardiographically derived respiratory rate in unstable trauma patients.
    Yang S; Menne A; Hu P; Stansbury L; Gao C; Dorsey N; Chiu W; Shackelford S; Mackenzie C
    J Clin Monit Comput; 2017 Aug; 31(4):765-772. PubMed ID: 27270963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A visual stethoscope to detect the position of the tracheal tube.
    Kato H; Suzuki A; Nakajima Y; Makino H; Sanjo Y; Nakai T; Shiraishi Y; Katoh T; Sato S
    Anesth Analg; 2009 Dec; 109(6):1836-42. PubMed ID: 19923511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tracheal sounds acquisition using smartphones.
    Reyes BA; Reljin N; Chon KH
    Sensors (Basel); 2014 Jul; 14(8):13830-50. PubMed ID: 25196108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using the entropy of tracheal sounds to detect apnea during sedation in healthy nonobese volunteers.
    Yu L; Ting CK; Hill BE; Orr JA; Brewer LM; Johnson KB; Egan TD; Westenskow DR
    Anesthesiology; 2013 Jun; 118(6):1341-9. PubMed ID: 23407106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computerized wheeze detection in young infants: comparison of signals from tracheal and chest wall sensors.
    Puder LC; Wilitzki S; Bührer C; Fischer HS; Schmalisch G
    Physiol Meas; 2016 Dec; 37(12):2170-2180. PubMed ID: 27869106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noncontact Monitoring of Respiration by Dynamic Air-Pressure Sensor.
    Takarada T; Asada T; Sumi Y; Higuchi Y
    Anesth Prog; 2015; 62(3):100-5. PubMed ID: 26398125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of 7 Different Sensors for Detecting Low Respiratory Rates Using a Single Breath Detection Algorithm in Nonintubated, Sedated Volunteers.
    Ermer S; Brewer L; Orr J; Egan TD; Johnson K
    Anesth Analg; 2019 Aug; 129(2):399-408. PubMed ID: 30234539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of time-frequency representation techniques for thoracic sounds analysis.
    Reyes BA; Charleston-Villalobos S; González-Camarena R; Aljama-Corrales T
    Comput Methods Programs Biomed; 2014 May; 114(3):276-90. PubMed ID: 24680639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tracheal sound parameters of respiratory cycle phases show differences between flow-limited and normal breathing during sleep.
    Kulkas A; Huupponen E; Virkkala J; Saastamoinen A; Rauhala E; Tenhunen M; Himanen SL
    Physiol Meas; 2010 Mar; 31(3):427-38. PubMed ID: 20150689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Novel Algorithm for HRV Estimation from Short-Term Acoustic Recordings at Neck.
    Sharma P; Rodriguez-Villegas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6343-6346. PubMed ID: 31947293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of pulmonary flow using impedance pneumography.
    Seppä VP; Viik J; Hyttinen J
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2277-85. PubMed ID: 20542759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic breath and snore sounds classification from tracheal and ambient sounds recordings.
    Yadollahi A; Moussavi Z
    Med Eng Phys; 2010 Nov; 32(9):985-90. PubMed ID: 20674455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.