BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 25570261)

  • 21. Can magnetic targeting of magnetically labeled circulating cells optimize intramyocardial cell retention?
    Chaudeurge A; Wilhelm C; Chen-Tournoux A; Farahmand P; Bellamy V; Autret G; Ménager C; Hagège A; Larghéro J; Gazeau F; Clément O; Menasché P
    Cell Transplant; 2012; 21(4):679-91. PubMed ID: 22080748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantification of superparamagnetic iron oxide with large dynamic range using TurboSPI.
    Rioux JA; Brewer KD; Beyea SD; Bowen CV
    J Magn Reson; 2012 Mar; 216():152-60. PubMed ID: 22364896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variations in labeling protocol influence incorporation, distribution and retention of iron oxide nanoparticles into human umbilical vein endothelial cells.
    van Tiel ST; Wielopolski PA; Houston GC; Krestin GP; Bernsen MR
    Contrast Media Mol Imaging; 2010; 5(5):247-57. PubMed ID: 20973110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of SPIO nanoparticles using phase gradient mapping.
    Langley J; Zhao Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3605-8. PubMed ID: 19964308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-resolution cardiovascular MRI by integrating parallel imaging with low-rank and sparse modeling.
    Christodoulou AG; Zhang H; Zhao B; Hitchens TK; Ho C; Liang ZP
    IEEE Trans Biomed Eng; 2013 Nov; 60(11):3083-92. PubMed ID: 23744657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetic resonance imaging (MRI) of inflamed myocardium using iron oxide nanoparticles in patients with acute myocardial infarction - preliminary results.
    Yilmaz A; Rösch S; Klingel K; Kandolf R; Helluy X; Hiller KH; Jakob PM; Sechtem U
    Int J Cardiol; 2013 Feb; 163(2):175-82. PubMed ID: 21689857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functionalizable silica-based micron-sized iron oxide particles for cellular magnetic resonance imaging.
    Raschzok N; Langer CM; Schmidt C; Lerche KH; Billecke N; Nehls K; Schlüter NB; Leder A; Rohn S; Mogl MT; Lüdemann L; Stelter L; Teichgräber UK; Neuhaus P; Sauer IM
    Cell Transplant; 2013; 22(11):1959-70. PubMed ID: 23294541
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superparamagnetic iron oxide-enhanced magnetic resonance for imaging cardiac inflammation. A minireview.
    Podrouzkova H; Feitova V; Panovsky R; Meluzin J; Orban M
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2015 Sep; 159(3):378-81. PubMed ID: 24993740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell quantification: evolution of compartmentalization and distribution of iron-oxide particles and labeled cells.
    Kotek G; van Tiel ST; Wielopolski PA; Houston GC; Krestin GP; Bernsen MR
    Contrast Media Mol Imaging; 2012; 7(2):195-203. PubMed ID: 22434632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ labeling of immune cells with iron oxide particles: an approach to detect organ rejection by cellular MRI.
    Wu YL; Ye Q; Foley LM; Hitchens TK; Sato K; Williams JB; Ho C
    Proc Natl Acad Sci U S A; 2006 Feb; 103(6):1852-7. PubMed ID: 16443687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo magnetic resonance imaging of iron oxide-labeled, arterially-injected mesenchymal stem cells in kidneys of rats with acute ischemic kidney injury: detection and monitoring at 3T.
    Ittrich H; Lange C; Tögel F; Zander AR; Dahnke H; Westenfelder C; Adam G; Nolte-Ernsting C
    J Magn Reson Imaging; 2007 Jun; 25(6):1179-91. PubMed ID: 17520738
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superparamagnetic iron oxide nanocolloids in MRI studies of neuroinflammation.
    Ugga L; Romeo V; Tedeschi E; Brunetti A; Quarantelli M
    J Neurosci Methods; 2018 Dec; 310():12-23. PubMed ID: 29913184
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immune cells detection of the in vivo rejecting heart in USPIO-enhanced magnetic resonance imaging.
    Chang HH; Moura JM; Wu YL; Ho C
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():942-5. PubMed ID: 18260193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic MR image reconstruction-separation from undersampled (k,t)-space via low-rank plus sparse prior.
    Trémoulhéac B; Dikaios N; Atkinson D; Arridge SR
    IEEE Trans Med Imaging; 2014 Aug; 33(8):1689-701. PubMed ID: 24802294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Narrowband magnetic particle imaging.
    Goodwill PW; Scott GC; Stang PP; Conolly SM
    IEEE Trans Med Imaging; 2009 Aug; 28(8):1231-7. PubMed ID: 19211340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Noninvasive in vivo tracking of mesenchymal stem cells and evaluation of cell therapeutic effects in a murine model using a clinical 3.0 T MRI.
    Drey F; Choi YH; Neef K; Ewert B; Tenbrock A; Treskes P; Bovenschulte H; Liakopoulos OJ; Brenkmann M; Stamm C; Wittwer T; Wahlers T
    Cell Transplant; 2013; 22(11):1971-80. PubMed ID: 23050950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effectiveness of micron-sized superparamagnetic iron oxide particles as markers for detection of migration of bone marrow-derived mesenchymal stromal cells in a stroke model.
    Tarulli E; Chaudhuri JD; Gretka V; Hoyles A; Morshead CM; Stanisz GJ
    J Magn Reson Imaging; 2013 Jun; 37(6):1409-18. PubMed ID: 23712844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo magnetic resonance imaging of iron oxide-labeled, intravenous-injected mesenchymal stem cells in kidneys of rabbits with acute ischemic kidney injury: detection and monitoring at 1.5 T.
    Zhang R; Li J; Xin L; Xie J
    Ren Fail; 2015; 37(8):1363-9. PubMed ID: 26248484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessments of proliferation capacity and viability of New Zealand rabbit peripheral blood endothelial progenitor cells labeled with superparamagnetic particles.
    Mai XL; Ma ZL; Sun JH; Ju SH; Ma M; Teng GJ
    Cell Transplant; 2009; 18(2):171-81. PubMed ID: 19499705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PECAM-1-targeted micron-sized particles of iron oxide as MRI contrast agent for detection of vascular remodeling after cerebral ischemia.
    Deddens LH; van Tilborg GA; van der Toorn A; de Vries HE; Dijkhuizen RM
    Contrast Media Mol Imaging; 2013; 8(5):393-401. PubMed ID: 23740809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.