These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25570310)

  • 1. Characterization of wheelchair maneuvers based on noisy inertial sensor data: a preliminary study.
    Fu J; Liu T; Jones M; Qian G; Jan YK
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1731-4. PubMed ID: 25570310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel mobile-cloud system for capturing and analyzing wheelchair maneuvering data: A pilot study.
    Fu J; Jones M; Liu T; Hao W; Yan Y; Qian G; Jan YK
    Assist Technol; 2016; 28(2):105-14. PubMed ID: 26479684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Mobile Device-Based Approach to Quantitative Mobility Measurements for Power Wheelchair Users.
    Fu J; Zhang S; Wang H; Zhao YD; Qian G
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validity of consumer-grade activity monitor to identify manual wheelchair propulsion in standardized activities of daily living.
    Leving MT; Horemans HLD; Vegter RJK; de Groot S; Bussmann JBJ; van der Woude LHV
    PLoS One; 2018; 13(4):e0194864. PubMed ID: 29641582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wegoto: A Smartphone-based approach to assess and improve accessibility for wheelchair users.
    Mourcou Q; Fleury A; Dupuy P; Diot B; Franco C; Vuillerme N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1194-7. PubMed ID: 24109907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capturing and analyzing wheelchair maneuvering patterns with mobile cloud computing.
    Fu J; Hao W; White T; Yan Y; Jones M; Jan YK
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2419-22. PubMed ID: 24110214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Data Logger for Capturing Human-Machine Interaction in Wheelchair Head-Foot Steering Sensor System in Dyskinetic Cerebral Palsy.
    Gakopoulos S; Nica IG; Bekteshi S; Aerts JM; Monbaliu E; Hallez H
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partitioning kinetic energy during freewheeling wheelchair maneuvers.
    Medola FO; Dao PV; Caspall JJ; Sprigle S
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):326-33. PubMed ID: 24235308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of a simulated wheelchair based on a hybrid brain computer interface.
    Long J; Li Y; Wang H; Yu T; Pan J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6727-30. PubMed ID: 23367473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facial expression controlled wheelchair for people with disabilities.
    Rabhi Y; Mrabet M; Fnaiech F
    Comput Methods Programs Biomed; 2018 Oct; 165():89-105. PubMed ID: 30337084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling manual wheelchair propulsion cost during straight and curvilinear trajectories.
    Misch J; Huang M; Sprigle S
    PLoS One; 2020; 15(6):e0234742. PubMed ID: 32555594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobility profile and wheelchair driving skills of powered wheelchair users: sensor-based event recognition using a support vector machine classifier.
    Moghaddam AK; Pineau J; Frank J; Archambault P; Routhier F; Audet T; Polgar J; Michaud F; Boissy P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7336-9. PubMed ID: 22256033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards the Development of a Learning-Based Intention Classification Framework for Pushrim-Activated Power-Assisted Wheelchairs.
    Khalili M; Tao T; Ye R; Xie S; Yang H; Machiel Van der Loos HF; Borisoff JF
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():95-100. PubMed ID: 31374613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An EOG-Based Human-Machine Interface for Wheelchair Control.
    Huang Q; He S; Wang Q; Gu Z; Peng N; Li K; Zhang Y; Shao M; Li Y
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):2023-2032. PubMed ID: 28767359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fall detection from a manual wheelchair: preliminary findings based on accelerometers using machine learning techniques.
    Abou L; Fliflet A; Presti P; Sosnoff JJ; Mahajan HP; Frechette ML; Rice LA
    Assist Technol; 2023 Nov; 35(6):523-531. PubMed ID: 36749900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From big data to rich data: The key features of athlete wheelchair mobility performance.
    van der Slikke RMA; Berger MAM; Bregman DJJ; Veeger HEJ
    J Biomech; 2016 Oct; 49(14):3340-3346. PubMed ID: 27612973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turning in Circles: Understanding Manual Wheelchair Use Towards Developing User-Friendly Steering Systems.
    Togni R; Kilchenmann A; Proffe A; Mullarkey J; Demkó L; Taylor WR; Zemp R
    Front Bioeng Biotechnol; 2022; 10():831528. PubMed ID: 35252140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Registration and Analysis of Acceleration Data to Recognize Physical Activity.
    Kołodziej M; Majkowski A; Tarnowski P; Rak RJ; Gebert D; Sawicki D
    J Healthc Eng; 2019; 2019():9497151. PubMed ID: 30944719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shared control strategies for obstacle avoidance tasks in an intelligent wheelchair.
    Trieu HT; Nguyen HT; Willey K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4254-7. PubMed ID: 19163652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eye-Movement-Controlled Wheelchair Based on Flexible Hydrogel Biosensor and WT-SVM.
    Wang X; Xiao Y; Deng F; Chen Y; Zhang H
    Biosensors (Basel); 2021 Jun; 11(6):. PubMed ID: 34208524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.