These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25570394)

  • 1. Dynamic modeling of the hydrogel molecular filter in a metamaterial biosensing system for glucose concentration estimation.
    Teutsch T; Mesch M; Giessen H; Tarin C
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2081-4. PubMed ID: 25570394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrete wavelength selection for the optical readout of a metamaterial biosensing system for glucose concentration estimation via a support vector regression model.
    Teutsch T; Mesch M; Giessen H; Tarin C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6421-4. PubMed ID: 26737762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a continuous intravascular glucose monitoring system.
    Beier B; Musick K; Matsumoto A; Panitch A; Nauman E; Irazoqui P
    Sensors (Basel); 2011; 11(1):409-24. PubMed ID: 22344366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved fluorescent imaging of glucose.
    Schäferling M; Wu M; Wolfbeis OS
    J Fluoresc; 2004 Sep; 14(5):561-8. PubMed ID: 15617263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A near infrared holographic glucose sensor.
    Vezouviou E; Lowe CR
    Biosens Bioelectron; 2015 Jun; 68():371-381. PubMed ID: 25613815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Affinity-based turbidity sensor for glucose monitoring by optical coherence tomography: toward the development of an implantable sensor.
    Ballerstadt R; Kholodnykh A; Evans C; Boretsky A; Motamedi M; Gowda A; McNichols R
    Anal Chem; 2007 Sep; 79(18):6965-74. PubMed ID: 17702528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of pyranine derivatives in boronic acid based saccharide sensing: significance of charge interaction between dye and quencher in solution and hydrogel.
    Cappuccio FE; Suri JT; Cordes DB; Wessling RA; Singaram B
    J Fluoresc; 2004 Sep; 14(5):521-33. PubMed ID: 15617260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous non-invasive ophthalmic glucose sensor for diabetics.
    Domschke AM
    Chimia (Aarau); 2010; 64(1-2):43-4. PubMed ID: 21137683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears.
    Hu Y; Jiang X; Zhang L; Fan J; Wu W
    Biosens Bioelectron; 2013 Oct; 48():94-9. PubMed ID: 23651573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization Synthesis and Biosensing Performance of an Acrylate-Based Hydrogel as an Optical Waveguiding Sensing Film.
    Makhsin SR; Goddard NJ; Gupta R; Gardner P; Scully PJ
    Anal Chem; 2020 Nov; 92(22):14907-14914. PubMed ID: 32378876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomedical soft contact-lens sensor for in situ ocular biomonitoring of tear contents.
    Chu M; Shirai T; Takahashi D; Arakawa T; Kudo H; Sano K; Sawada S; Yano K; Iwasaki Y; Akiyoshi K; Mochizuki M; Mitsubayashi K
    Biomed Microdevices; 2011 Aug; 13(4):603-11. PubMed ID: 21475940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman Analysis of Tear Fluid Alteration Following Contact Lense Use.
    Capaccio A; Sasso A; Rusciano G
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hydrogel-based implantable micromachined transponder for wireless glucose measurement.
    Lei M; Baldi A; Nuxoll E; Siegel RA; Ziaie B
    Diabetes Technol Ther; 2006 Feb; 8(1):112-22. PubMed ID: 16472058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of contact lens material and design on the ocular surface.
    Ruiz-Alcocer J; Monsálvez-Romín D; García-Lázaro S; Albarrán-Diego C; Hernández-Verdejo JL; Madrid-Costa D
    Clin Exp Optom; 2018 Mar; 101(2):188-192. PubMed ID: 29023989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amperometric biosensor for in vivo glucose sensing based on glucose oxidase immobilized in a redox hydrogel.
    Linke B; Kerner W; Kiwit M; Pishko M; Heller A
    Biosens Bioelectron; 1994; 9(2):151-8. PubMed ID: 8018316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical sensing properties of dithiocarbamate-functionalized microspheres, using a polyvinylpyridine-polyvinylbenzyl chloride copolymer.
    Shakhsher ZM; Odeh IM; Rajabi IM; Khatib MK
    Sensors (Basel); 2010; 10(10):8953-62. PubMed ID: 22163390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A de novo self-assembling peptide hydrogel biosensor with covalently immobilised DNA-recognising motifs.
    King PJ; Saiani A; Bichenkova EV; Miller AF
    Chem Commun (Camb); 2016 May; 52(40):6697-700. PubMed ID: 27117274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic bioassay system based on microarrays of hydrogel sensing elements entrapping quantum dot-enzyme conjugates.
    Jang E; Kim S; Koh WG
    Biosens Bioelectron; 2012 Jan; 31(1):529-36. PubMed ID: 22177543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogel Based Biosensors for In Vitro Diagnostics of Biochemicals, Proteins, and Genes.
    Jung IY; Kim JS; Choi BR; Lee K; Lee H
    Adv Healthc Mater; 2017 Jun; 6(12):. PubMed ID: 28371450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin hydrogel films for rapid optical biosensing.
    Zhang X; Guan Y; Zhang Y
    Biomacromolecules; 2012 Jan; 13(1):92-7. PubMed ID: 22136353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.