BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25570424)

  • 1. Surface electromyogram-based detection of muscle fatigue during cyclic dynamic contraction under blood flow restriction.
    Ito K; Hotta Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2205-8. PubMed ID: 25570424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of EMG-based muscle fatigue during cyclic dynamic contraction using a monopolar configuration.
    Hotta Y; Ito K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2140-3. PubMed ID: 24110144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EMG-based detection of muscle fatigue during low-level isometric contraction by recurrence quantification analysis and monopolar configuration.
    Ito K; Hotta Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4237-41. PubMed ID: 23366863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EMG-based detection of muscle fatigue during low-level isometric contraction: effects of electrode configuration and blood flow restriction.
    Hotta Y; Ito K
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3877-9. PubMed ID: 22255186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle fatigue detection during dynamic contraction under blood flow restriction: Improvement of detection sensitivity using multivariable fatigue indices.
    Ito K; Kourakata Y; Hotta Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6078-81. PubMed ID: 26737678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Elbow Flexion Force Estimation Through a Muscle Twitch Model and sEMG in a Fatigue Condition.
    Na Y; Kim J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1431-1439. PubMed ID: 28113944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Verification of the muscle fatigue detection capability of a unipolar-leads system using a surface electromyogram model.
    Hotta Y; Korakata Y; Ito K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():110-3. PubMed ID: 25569909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between Isometric Muscle Force and Fractal Dimension of Surface Electromyogram.
    Beretta-Piccoli M; Boccia G; Ponti T; Clijsen R; Barbero M; Cescon C
    Biomed Res Int; 2018; 2018():5373846. PubMed ID: 29736393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle fatigue monitoring using wavelet decomposition of surface EMG.
    Xiao S; Leung SC
    Biomed Sci Instrum; 1997; 34():147-52. PubMed ID: 9603029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial variability in cortex-muscle coherence investigated with magnetoencephalography and high-density surface electromyography.
    Piitulainen H; Botter A; Bourguignon M; Jousmäki V; Hari R
    J Neurophysiol; 2015 Nov; 114(5):2843-53. PubMed ID: 26354317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies to identify changes in SEMG due to muscle fatigue during cycling.
    Singh VP; Kumar DK; Polus B; Fraser S
    J Med Eng Technol; 2007; 31(2):144-51. PubMed ID: 17365438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeatability of surface EMG parameters at various isometric contraction levels and during fatigue using bipolar and Laplacian electrode configurations.
    Ollivier K; Portero P; Maïsetti O; Hogrel JY
    J Electromyogr Kinesiol; 2005 Oct; 15(5):466-73. PubMed ID: 15935958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle fatigue estimation with twitch force derived from sEMG peaks.
    Na Y; Lee HD; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3492-5. PubMed ID: 26737045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute effects of exercise under different levels of blood-flow restriction on muscle activation and fatigue.
    Fatela P; Reis JF; Mendonca GV; Avela J; Mil-Homens P
    Eur J Appl Physiol; 2016 May; 116(5):985-95. PubMed ID: 27017495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the duration and power spectral changes of monopolar and bipolar M waves caused by alterations in muscle fibre conduction velocity.
    Rodriguez-Falces J; Navallas J; Malanda A; Rodriguez-Martin O
    J Electromyogr Kinesiol; 2014 Aug; 24(4):452-64. PubMed ID: 24774228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface EMG and fatigue.
    Jurell KC
    Phys Med Rehabil Clin N Am; 1998 Nov; 9(4):933-47, viii-ix. PubMed ID: 9894104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface EMG mapping of the human trapezius muscle: the topography of monopolar and bipolar surface EMG amplitude and spectrum parameters at varied forces and in fatigue.
    Kleine BU; Schumann NP; Stegeman DF; Scholle HC
    Clin Neurophysiol; 2000 Apr; 111(4):686-93. PubMed ID: 10727920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Muscle Fatigue Progression using Cyclostationary Property of Surface Electromyography Signals.
    Karthick PA; Venugopal G; Ramakrishnan S
    J Med Syst; 2016 Jan; 40(1):28. PubMed ID: 26547848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the progression of muscle fatigue based on dependence between motor units using high density surface electromyogram.
    Bingham A; Arjunan SP; Kumar DK
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3654-3657. PubMed ID: 28269086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Surface Electromyography to Measure Muscle Fatigue in Patients in an Acute Care Hospital.
    Skrzat JM; Carp SJ; Dai T; Lauer R; Hiremath SV; Gaeckle N; Tucker CA
    Phys Ther; 2020 Jun; 100(6):897-906. PubMed ID: 32157308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.