These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 25570428)

  • 1. Automated Sleep Spindle detection using novel EEG features and mixture models.
    Patti CR; Chaparro-Vargas R; Cvetkovic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2221-4. PubMed ID: 25570428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated sleep spindle detection using IIR filters and a Gaussian Mixture Model.
    Patti CR; Penzel T; Cvetkovic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():610-3. PubMed ID: 26736336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep spindle detection using multivariate Gaussian mixture models.
    Patti CR; Penzel T; Cvetkovic D
    J Sleep Res; 2018 Aug; 27(4):e12614. PubMed ID: 29034521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved spindle detection through intuitive pre-processing of electroencephalogram.
    Jaleel A; Ahmed B; Tafreshi R; Boivin DB; Streletz L; Haddad N
    J Neurosci Methods; 2014 Aug; 233():1-12. PubMed ID: 24887741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spindler: a framework for parametric analysis and detection of spindles in EEG with application to sleep spindles.
    LaRocco J; Franaszczuk PJ; Kerick S; Robbins K
    J Neural Eng; 2018 Dec; 15(6):066015. PubMed ID: 30132445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced automated sleep spindle detection algorithm based on synchrosqueezing.
    Kabir MM; Tafreshi R; Boivin DB; Haddad N
    Med Biol Eng Comput; 2015 Jul; 53(7):635-44. PubMed ID: 25779627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A personalized semi-automatic sleep spindle detection (PSASD) framework.
    Kafashan M; Gupte G; Kang P; Hyche O; Luong AH; Prateek GV; Ju YS; Palanca BJA
    J Neurosci Methods; 2024 Jul; 407():110064. PubMed ID: 38301832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autoassociative MLP in sleep spindle detection.
    Huupponen E; Värri A; Himanen SL; Hasan J; Lehtokangas M; Saarinen J
    J Med Syst; 2000 Jun; 24(3):183-93. PubMed ID: 10984872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and comparison of four sleep spindle detection methods.
    Huupponen E; Gómez-Herrero G; Saastamoinen A; Värri A; Hasan J; Himanen SL
    Artif Intell Med; 2007 Jul; 40(3):157-70. PubMed ID: 17555950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated sleep-spindle detection in healthy children polysomnograms.
    Causa L; Held CM; Causa J; Estévez PA; Perez CA; Chamorro R; Garrido M; Algarín C; Peirano P
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2135-46. PubMed ID: 20550978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated real-time EEG sleep spindle detection for brain-state-dependent brain stimulation.
    Hassan U; Feld GB; Bergmann TO
    J Sleep Res; 2022 Dec; 31(6):e13733. PubMed ID: 36130730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Independent component analysis for source localization of EEG sleep spindle components.
    Ventouras EM; Ktonas PY; Tsekou H; Paparrigopoulos T; Kalatzis I; Soldatos CR
    Comput Intell Neurosci; 2010; 2010():329436. PubMed ID: 20369057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveil sleep spindles with concentration of frequency and time (ConceFT).
    Shimizu R; Wu HT
    Physiol Meas; 2024 Aug; 45(8):. PubMed ID: 39042095
    [No Abstract]   [Full Text] [Related]  

  • 14. A single channel sleep-spindle detector based on multivariate classification of EEG epochs: MUSSDET.
    Lachner-Piza D; Epitashvili N; Schulze-Bonhage A; Stieglitz T; Jacobs J; Dümpelmann M
    J Neurosci Methods; 2018 Mar; 297():31-43. PubMed ID: 29291925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multichannel sleep spindle detection using sparse low-rank optimization.
    Parekh A; Selesnick IW; Osorio RS; Varga AW; Rapoport DM; Ayappa I
    J Neurosci Methods; 2017 Aug; 288():1-16. PubMed ID: 28600157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep spindles and spike-wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis.
    Sitnikova E; Hramov AE; Koronovsky AA; van Luijtelaar G
    J Neurosci Methods; 2009 Jun; 180(2):304-16. PubMed ID: 19383511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep spindle detection through amplitude-frequency normal modelling.
    Nonclercq A; Urbain C; Verheulpen D; Decaestecker C; Van Bogaert P; Peigneux P
    J Neurosci Methods; 2013 Apr; 214(2):192-203. PubMed ID: 23370313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a novel automatic sleep spindle detector with high performance during sleep in middle aged subjects.
    Wendt SL; Christensen JA; Kempfner J; Leonthin HL; Jennum P; Sorensen HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4250-3. PubMed ID: 23366866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An automatic sleep spindle detector based on wavelets and the teager energy operator.
    Ahmed B; Redissi A; Tafreshi R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2596-9. PubMed ID: 19965220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing EEG sleep spindle propagation. Part 2: experimental characterization.
    O'Reilly C; Nielsen T
    J Neurosci Methods; 2014 Jan; 221():215-27. PubMed ID: 23999173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.