BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 25570499)

  • 1. Contributions of knee swing initiation and ankle plantar flexion to the walking mechanics of amputees using a powered prosthesis.
    Ingraham KA; Fey NP; Simon AM; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2504-7. PubMed ID: 25570499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis.
    Ingraham KA; Fey NP; Simon AM; Hargrove LJ
    PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis.
    Wang J; Kannape OA; Herr HM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650391. PubMed ID: 24187210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimum jerk swing control allows variable cadence in powered transfemoral prostheses.
    Lenzi T; Hargrove LJ; Sensinger JW
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2492-5. PubMed ID: 25570496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes.
    Simon AM; Ingraham KA; Fey NP; Finucane SB; Lipschutz RD; Young AJ; Hargrove LJ
    PLoS One; 2014; 9(6):e99387. PubMed ID: 24914674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling Knee Swing Initiation and Ankle Plantarflexion With an Active Prosthesis on Level and Inclined Surfaces at Variable Walking Speeds.
    Fey NP; Simon AM; Young AJ; Hargrove LJ
    IEEE J Transl Eng Health Med; 2014; 2():2100412. PubMed ID: 27170878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV
    Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series.
    Hill D; Herr H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650375. PubMed ID: 24187194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of walking speed on minimum toe clearance and on the temporal relationship between minimum clearance and peak swing-foot velocity in unilateral trans-tibial amputees.
    De Asha AR; Buckley JG
    Prosthet Orthot Int; 2015 Apr; 39(2):120-5. PubMed ID: 24469428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can a powered knee-ankle prosthesis improve weight-bearing symmetry during stand-to-sit transitions in individuals with above-knee amputations?
    Hunt GR; Hood S; Gabert L; Lenzi T
    J Neuroeng Rehabil; 2023 May; 20(1):58. PubMed ID: 37131231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking.
    Grabowski AM; D'Andrea S
    J Neuroeng Rehabil; 2013 Jun; 10():49. PubMed ID: 23758860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of a Powered Knee-Ankle Prosthesis on Amputee Hip Compensations: A Case Series.
    Elery T; Rezazadeh S; Reznick E; Gray L; Gregg RD
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2944-2954. PubMed ID: 33232241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis.
    Arazpour M; Chitsazan A; Bani MA; Rouhi G; Ghomshe FT; Hutchins SW
    Prosthet Orthot Int; 2013 Oct; 37(5):411-4. PubMed ID: 23327836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Powered knee and ankle prosthesis with indirect volitional swing control enables level-ground walking and crossing over obstacles.
    Mendez J; Hood S; Gunnel A; Lenzi T
    Sci Robot; 2020 Jul; 5(44):. PubMed ID: 33022611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject.
    Sup F; Varol HA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):71-8. PubMed ID: 20952344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.