These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25570512)

  • 1. A semi-active hybrid neuroprosthesis for restoring lower limb function in paraplegics.
    Kirsch N; Alibeji N; Fisher L; Gregory C; Sharma N
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2557-60. PubMed ID: 25570512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia.
    Chang SR; Nandor MJ; Li L; Kobetic R; Foglyano KM; Schnellenberger JR; Audu ML; Pinault G; Quinn RD; Triolo RJ
    J Neuroeng Rehabil; 2017 May; 14(1):48. PubMed ID: 28558835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of joint motion constraints on the gait of normal subjects and their implications on the further development of hybrid FES orthosis for paraplegic persons.
    Yang L; Condie DN; Granat MH; Paul JP; Rowley DI
    J Biomech; 1996 Feb; 29(2):217-26. PubMed ID: 8849815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of a hybrid-FES system for gait restoration in paraplegics.
    Quintero HA; Farris RJ; Durfee WK; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():483-6. PubMed ID: 21096305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensor-based hip control with hybrid neuroprosthesis for walking in paraplegia.
    To CS; Kobetic R; Bulea TC; Audu ML; Schnellenberger JR; Pinault G; Triolo RJ
    J Rehabil Res Dev; 2014; 51(2):229-44. PubMed ID: 24933721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait evaluation of a novel hip constraint orthosis with implication for walking in paraplegia.
    Audu ML; To CS; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):610-8. PubMed ID: 20378478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering evaluation of the energy-storing orthosis FES gait system.
    Kangude A; Burgstahler B; Durfee W
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5927-30. PubMed ID: 21096941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid functional electrical stimulation with medial linkage knee-ankle-foot orthoses in complete paraplegics.
    Shimada Y; Hatakeyama K; Minato T; Matsunaga T; Sato M; Chida S; Itoi E
    Tohoku J Exp Med; 2006 Jun; 209(2):117-23. PubMed ID: 16707853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further development of hybrid functional electrical stimulation orthoses.
    Yang L; Granat MH; Paul JP; Condie DN; Rowley DI
    Spinal Cord; 1996 Oct; 34(10):611-4. PubMed ID: 8896128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further development of hybrid functional electrical stimulation orthoses.
    Yang L; Granat MH; Paul JP; Condie DN; Rowley DI
    Artif Organs; 1997 Mar; 21(3):183-7. PubMed ID: 9148700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.
    del-Ama AJ; Gil-Agudo A; Pons JL; Moreno JC
    J Neuroeng Rehabil; 2014 Mar; 11():27. PubMed ID: 24594302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals.
    Farris RJ; Quintero HA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):652-9. PubMed ID: 21968791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Approach for the Cooperative Control of FES With a Powered Exoskeleton During Level Walking for Persons With Paraplegia.
    Ha KH; Murray SA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):455-66. PubMed ID: 25915961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing stance phase propulsion during level walking by combining FES with a powered exoskeleton for persons with paraplegia.
    Ha KH; Quintero HA; Farris RJ; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():344-7. PubMed ID: 23365900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of powered gait orthosis on walking in individuals with paraplegia.
    Arazpour M; Ahmadi Bani M; Kashani RV; Tabatabai Ghomshe F; Mousavi ME; Hutchins SW
    Prosthet Orthot Int; 2013 Aug; 37(4):261-7. PubMed ID: 23172910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-Based Dynamic Control Allocation in a Hybrid Neuroprosthesis.
    Kirsch NA; Bao X; Alibeji NA; Dicianno BE; Sharma N
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):224-232. PubMed ID: 28952946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paraplegia: prolonged closed-loop standing with implanted nucleus FES-22 stimulator and Andrews' foot-ankle orthosis.
    Davis R; Houdayer T; Andrews B; Emmons S; Patrick J
    Stereotact Funct Neurosurg; 1997; 69(1-4 Pt 2):281-7. PubMed ID: 9711768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orthotic and therapeutic effect of functional electrical stimulation on fatigue induced gait patterns in people with multiple sclerosis.
    Barr CJ; Patritti BL; Bowes R; Crotty M; McLoughlin JV
    Disabil Rehabil Assist Technol; 2017 Aug; 12(6):560-572. PubMed ID: 28612678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control and implementation of a powered lower limb orthosis to aid walking in paraplegic individuals.
    Quintero HA; Farris RJ; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975481. PubMed ID: 22275679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive multichannel FES neuroprosthesis with learning control and automatic gait assessment.
    Müller P; Del Ama AJ; Moreno JC; Schauer T
    J Neuroeng Rehabil; 2020 Feb; 17(1):36. PubMed ID: 32111245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.