These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25570520)

  • 1. Assessing vibrotactile feedback strategies by controlling a cursor with unstable dynamics.
    Quick KM; Card NS; Whaite SM; Mischel J; Loughlin P; Batista AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2589-92. PubMed ID: 25570520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed.
    Raveh E; Portnoy S; Friedman J
    Hum Mov Sci; 2018 Apr; 58():32-40. PubMed ID: 29353091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the effects of adding vibrotactile feedback to myoelectric prosthesis users on performance and visual attention in a dual-task paradigm.
    Raveh E; Friedman J; Portnoy S
    Clin Rehabil; 2018 Oct; 32(10):1308-1316. PubMed ID: 29756458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of vibrotactile feedback and grasp interface compliance on perception and control of a sensorized myoelectric hand.
    Pena AE; Rincon-Gonzalez L; Abbas JJ; Jung R
    PLoS One; 2019; 14(1):e0210956. PubMed ID: 30650161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A brain-computer interface with vibrotactile biofeedback for haptic information.
    Chatterjee A; Aggarwal V; Ramos A; Acharya S; Thakor NV
    J Neuroeng Rehabil; 2007 Oct; 4():40. PubMed ID: 17941986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeing the visual channel by exploiting vibrotactile BCI feedback.
    Leeb R; Gwak K; Kim DS; del R Millán J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3093-6. PubMed ID: 24110382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.
    De Nunzio AM; Dosen S; Lemling S; Markovic M; Schweisfurth MA; Ge N; Graimann B; Falla D; Farina D
    Exp Brain Res; 2017 Aug; 235(8):2547-2559. PubMed ID: 28550423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrotactile display coding for a balance prosthesis.
    Kadkade PP; Benda BJ; Schmidt PB; Wall C
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):392-9. PubMed ID: 14960115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lingual electrotactile stimulation as an alternative sensory feedback pathway for brain-computer interface applications.
    Wilson JA; Walton LM; Tyler M; Williams J
    J Neural Eng; 2012 Aug; 9(4):045007. PubMed ID: 22832032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visuomotor behaviors and performance in a dual-task paradigm with and without vibrotactile feedback when using a myoelectric controlled hand.
    Raveh E; Friedman J; Portnoy S
    Assist Technol; 2018; 30(5):274-280. PubMed ID: 28628379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Control Architecture for Grasp Strength Regulation in Myocontrolled Robotic Hands Using Vibrotactile Feedback: Preliminary Results.
    Meattini R; Biagiotti L; Palli G; De Gregorio D; Melchiorri C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1272-1277. PubMed ID: 31374804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeated training with augmentative vibrotactile feedback increases object manipulation performance.
    Stepp CE; An Q; Matsuoka Y
    PLoS One; 2012; 7(2):e32743. PubMed ID: 22384283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmenting sensorimotor control using "goal-aware" vibrotactile stimulation during reaching and manipulation behaviors.
    Tzorakoleftherakis E; Murphey TD; Scheidt RA
    Exp Brain Res; 2016 Aug; 234(8):2403-14. PubMed ID: 27074942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative to direct haptic feedback, remote vibrotactile feedback improves but slows object manipulation.
    Stepp CE; Matsuoka Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2089-92. PubMed ID: 21095683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supplemental vibrotactile feedback of real-time limb position enhances precision of goal-directed reaching.
    Risi N; Shah V; Mrotek LA; Casadio M; Scheidt RA
    J Neurophysiol; 2019 Jul; 122(1):22-38. PubMed ID: 30995149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrotactile EMG feedback improves the control of prosthesis grasping force.
    Schweisfurth MA; Markovic M; Dosen S; Teich F; Graimann B; Farina D
    J Neural Eng; 2016 Oct; 13(5):056010. PubMed ID: 27547992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand.
    Cipriani C; Segil JL; Clemente F; ff Weir RF; Edin B
    Exp Brain Res; 2014 Nov; 232(11):3421-9. PubMed ID: 24992899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supplemental vibrotactile feedback control of stabilization and reaching actions of the arm using limb state and position error encodings.
    Krueger AR; Giannoni P; Shah V; Casadio M; Scheidt RA
    J Neuroeng Rehabil; 2017 May; 14(1):36. PubMed ID: 28464891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of kinematic vibrotactile feedback on learning to control a virtual prosthetic arm.
    Hasson CJ; Manczurowsky J
    J Neuroeng Rehabil; 2015 Mar; 12():31. PubMed ID: 25879430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.