These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25570522)

  • 1. Towards photorealistic and immersive virtual-reality environments for simulated prosthetic vision: integrating recent breakthroughs in consumer hardware and software.
    Zapf MP; Matteucci PB; Lovell NH; Zheng S; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2597-600. PubMed ID: 25570522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards an assistive peripheral visual prosthesis for long-term treatment of retinitis pigmentosa: evaluating mobility performance in immersive simulations.
    Zapf MP; Boon MY; Matteucci PB; Lovell NH; Suaning GJ
    J Neural Eng; 2015 Jun; 12(3):036001. PubMed ID: 25782059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereosonic vision: Exploring visual-to-auditory sensory substitution mappings in an immersive virtual reality navigation paradigm.
    Massiceti D; Hicks SL; van Rheede JJ
    PLoS One; 2018; 13(7):e0199389. PubMed ID: 29975734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assistive peripheral phosphene arrays deliver advantages in obstacle avoidance in simulated end-stage retinitis pigmentosa: a virtual-reality study.
    Zapf MP; Boon MY; Lovell NH; Suaning GJ
    J Neural Eng; 2016 Apr; 13(2):026022. PubMed ID: 26902525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immersive virtual reality technology in a three-dimensional virtual simulated store: Investigating telepresence and usability.
    Schnack A; Wright MJ; Holdershaw JL
    Food Res Int; 2019 Mar; 117():40-49. PubMed ID: 30736922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immersive Virtual Reality Simulations of Bionic Vision.
    Kasowski J; Beyeler M
    Augment Hum (2022); 2022 Mar; 2022():82-93. PubMed ID: 35856703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using a virtual reality system to study balance and walking in a virtual outdoor environment: a pilot study.
    Nyberg L; Lundin-Olsson L; Sondell B; Backman A; Holmlund K; Eriksson S; Stenvall M; Rosendahl E; Maxhall M; Bucht G
    Cyberpsychol Behav; 2006 Aug; 9(4):388-95. PubMed ID: 16901241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of visually guided tasks using simulated prosthetic vision and saliency-based cues.
    Parikh N; Itti L; Humayun M; Weiland J
    J Neural Eng; 2013 Apr; 10(2):026017. PubMed ID: 23449023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simplification of Visual Rendering in Simulated Prosthetic Vision Facilitates Navigation.
    Vergnieux V; Macé MJ; Jouffrais C
    Artif Organs; 2017 Sep; 41(9):852-861. PubMed ID: 28321887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An empirical study to investigate the efficacy of collaborative immersive virtual reality systems for designing information architecture of software systems.
    Narasimha S; Dixon E; Bertrand JW; Chalil Madathil K
    Appl Ergon; 2019 Oct; 80():175-186. PubMed ID: 31280803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real and virtual mobility performance in simulated prosthetic vision.
    Dagnelie G; Keane P; Narla V; Yang L; Weiland J; Humayun M
    J Neural Eng; 2007 Mar; 4(1):S92-101. PubMed ID: 17325421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial Presence, Performance, and Behavior between Real, Remote, and Virtual Immersive Environments.
    Khenak N; Vezien J; Bourdot P
    IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3467-3478. PubMed ID: 32976103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the use of immersive virtual reality, mouse and touchscreen in pointing and dragging-and-dropping tasks among young, middle-aged and older adults.
    Chen J; Or C
    Appl Ergon; 2017 Nov; 65():437-448. PubMed ID: 28395855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WeaVR: a self-contained and wearable immersive virtual environment simulation system.
    Hodgson E; Bachmann ER; Vincent D; Zmuda M; Waller D; Calusdian J
    Behav Res Methods; 2015 Mar; 47(1):296-307. PubMed ID: 24737097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion.
    Nilsson NC; Serafin S; Nordahl R
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):569-78. PubMed ID: 24650984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of visual realism on search tasks in mixed reality simulation.
    Lee C; Rincon GA; Meyer G; Höllerer T; Bowman DA
    IEEE Trans Vis Comput Graph; 2013 Apr; 19(4):547-56. PubMed ID: 23428438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wayfinding and Glaucoma: A Virtual Reality Experiment.
    Daga FB; Macagno E; Stevenson C; Elhosseiny A; Diniz-Filho A; Boer ER; Schulze J; Medeiros FA
    Invest Ophthalmol Vis Sci; 2017 Jul; 58(9):3343-3349. PubMed ID: 28687845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual Anatomical and Endoscopic Exploration Method of Internal Human Body for Training Simulator.
    Kwon K; Park JS; Shin BS
    J Korean Med Sci; 2020 Mar; 35(12):e90. PubMed ID: 32233159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual wayfinding using simulated prosthetic vision in gaze-locked viewing.
    Wang L; Yang L; Dagnelie G
    Optom Vis Sci; 2008 Nov; 85(11):E1057-63. PubMed ID: 18981914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaze-contingent processing improves mobility, scene recognition and visual search in simulated head-steered prosthetic vision.
    de Ruyter van Steveninck J; Nipshagen M; van Gerven M; Güçlü U; Güçlüturk Y; van Wezel R
    J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38502957
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.