These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25570618)

  • 1. Detection of variations in cognitive workload using multi-modality physiological sensors and a large margin unbiased regression machine.
    Zhang H; Zhu Y; Maniyeri J; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2985-8. PubMed ID: 25570618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Filter bank common spatial patterns in mental workload estimation.
    Arvaneh M; Umilta A; Robertson IH
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4749-52. PubMed ID: 26737355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multimodal Fusion for Objective Assessment of Cognitive Workload: A Review.
    Debie E; Fernandez Rojas R; Fidock J; Barlow M; Kasmarik K; Anavatti S; Garratt M; Abbass HA
    IEEE Trans Cybern; 2021 Mar; 51(3):1542-1555. PubMed ID: 31545761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Annotation and prediction of stress and workload from physiological and inertial signals.
    Ghosh A; Danieli M; Riccardi G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1621-4. PubMed ID: 26736585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement and identification of mental workload during simulated computer tasks with multimodal methods and machine learning.
    Ding Y; Cao Y; Duffy VG; Wang Y; Zhang X
    Ergonomics; 2020 Jul; 63(7):896-908. PubMed ID: 32330080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsupervised classification of operator workload from brain signals.
    Schultze-Kraft M; Dähne S; Gugler M; Curio G; Blankertz B
    J Neural Eng; 2016 Jun; 13(3):036008. PubMed ID: 27078889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Cognitive Workload Monitoring Based on Machine Learning Using Physiological Signals in Rescue Missions.
    Momeni N; Dell'Agnola F; Arza A; Atienza D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3779-3785. PubMed ID: 31946697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature Selection Model based on EEG Signals for Assessing the Cognitive Workload in Drivers.
    Becerra-Sánchez P; Reyes-Munoz A; Guerrero-Ibañez A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature Weight Driven Interactive Mutual Information Modeling for Heterogeneous Bio-Signal Fusion to Estimate Mental Workload.
    Zhang P; Wang X; Chen J; You W
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29023364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification.
    Park SH; Lee D; Lee SG
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):498-505. PubMed ID: 28961119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eliminating Individual Bias to Improve Stress Detection from Multimodal Physiological Data.
    Das D; Datta S; Bhattacharjee T; Choudhury AD; Pal A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5753-5758. PubMed ID: 30441643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of Perceived Human Stress using Physiological Signals.
    Arsalan A; Majid M; Anwar SM; Bagci U
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1247-1250. PubMed ID: 31946118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying Cognitive Workload Using a Non-Contact Magnetocardiography (MCG) Wearable Sensor.
    Wang Z; Zhu K; Kaur A; Recker R; Yang J; Kiourti A
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine-Learning Based Monitoring of Cognitive Workload in Rescue Missions With Drones.
    DellrAgnola F; Jao PK; Arza A; Chavarriaga R; Millan JDR; Floreano D; Atienza D
    IEEE J Biomed Health Inform; 2022 Sep; 26(9):4751-4762. PubMed ID: 35759604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG-Based Mental Workload Classification Method Based on Hybrid Deep Learning Model Under IoT.
    Shao S; Han G; Wang T; Lin C; Song C; Yao C
    IEEE J Biomed Health Inform; 2024 May; 28(5):2536-2546. PubMed ID: 37276109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Nonlinear analysis of multi-channel EEG and its application to mental workload detection].
    Liu D; Jiang Z; Feng H; Wang G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):960-3. PubMed ID: 17121331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of task workload from EEG data: new and current tools and perspectives.
    Kothe CA; Makeig S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6547-51. PubMed ID: 22255839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Mental Workload Detection of Air Traffic Controllers with Three EEG Sensors.
    Li H; Zhu P; Shao Q
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.
    Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW
    Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing cognitive mental workload via EEG signals and an ensemble deep learning classifier based on denoising autoencoders.
    Yang S; Yin Z; Wang Y; Zhang W; Wang Y; Zhang J
    Comput Biol Med; 2019 Jun; 109():159-170. PubMed ID: 31059900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.