These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25570634)

  • 1. On the asynchronously continuous control of mobile robot movement by motor cortical spiking activity.
    Xu Z; So RQ; Toe KK; Ang KK; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3049-52. PubMed ID: 25570634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonholonomic mobile system control by combining EEG-based BCI with ANFIS.
    Yu W; Feng H; Feng Y; Madani K; Sabourin C
    Biomed Mater Eng; 2015; 26 Suppl 1():S1125-33. PubMed ID: 26405870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of cortical neurons for identifying movement transitions in stand and squat.
    Ma X; Hu D; Huang J; Li W; He J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6051-4. PubMed ID: 24111119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auto-deleting brain machine interface: Error detection using spiking neural activity in the motor cortex.
    Even-Chen N; Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():71-5. PubMed ID: 26736203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-computer interface control along instructed paths.
    Sadtler PT; Ryu SI; Tyler-Kabara EC; Yu BM; Batista AP
    J Neural Eng; 2015 Feb; 12(1):016015. PubMed ID: 25605498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network.
    Tseng PH; Urpi NA; Lebedev M; Nicolelis M
    Neural Comput; 2019 Jun; 31(6):1085-1113. PubMed ID: 30979355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of the primate motor cortex and free arm movements in three-dimensional space: a robot arm system controlled by an artificial neural network.
    Dauffenbach LM
    Biomed Sci Instrum; 1999; 35():360-5. PubMed ID: 11143378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor cortical control of movement speed with implications for brain-machine interface control.
    Golub MD; Yu BM; Schwartz AB; Chase SM
    J Neurophysiol; 2014 Jul; 112(2):411-29. PubMed ID: 24717350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface.
    Nason SR; Mender MJ; Vaskov AK; Willsey MS; Ganesh Kumar N; Kung TA; Patil PG; Chestek CA
    Neuron; 2021 Oct; 109(19):3164-3177.e8. PubMed ID: 34499856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Causal network in a deafferented non-human primate brain.
    Balasubramanian K; Takahashi K; Hatsopoulos NG
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():59-62. PubMed ID: 26736200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved prediction of bimanual movements by a two-staged (effector-then-trajectory) decoder with epidural ECoG in nonhuman primates.
    Choi H; Lee J; Park J; Lee S; Ahn KH; Kim IY; Lee KM; Jang DP
    J Neural Eng; 2018 Feb; 15(1):016011. PubMed ID: 28875947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor imagery, P300 and error-related EEG-based robot arm movement control for rehabilitation purpose.
    Bhattacharyya S; Konar A; Tibarewala DN
    Med Biol Eng Comput; 2014 Dec; 52(12):1007-17. PubMed ID: 25266261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in cortical network connectivity with long-term brain-machine interface exposure after chronic amputation.
    Balasubramanian K; Vaidya M; Southerland J; Badreldin I; Eleryan A; Takahashi K; Qian K; Slutzky MW; Fagg AH; Oweiss K; Hatsopoulos NG
    Nat Commun; 2017 Nov; 8(1):1796. PubMed ID: 29180616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor prediction in Brain-Computer Interfaces for controlling mobile robots.
    Geng T; Gan JQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():634-7. PubMed ID: 19162735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compensating for delays in brain-machine interfaces by decoding intended future movement.
    Willett FR; Suminski AJ; Fagg AH; Hatsopoulos NG
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4087-90. PubMed ID: 23366826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthogonalizing the Activity of Two Neural Units for 2D Cursor Movement Control.
    Zheng Q; Zhang Y; Wan Z; Malik WQ; Chen W; Zhang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3046-3049. PubMed ID: 33018647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving brain-machine interface performance by decoding intended future movements.
    Willett FR; Suminski AJ; Fagg AH; Hatsopoulos NG
    J Neural Eng; 2013 Apr; 10(2):026011. PubMed ID: 23428966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Information conveyed through brain-control: cursor versus robot.
    Taylor DM; Tillery SI; Schwartz AB
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):195-9. PubMed ID: 12899273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Invariant neural dynamics drive commands to control different movements.
    Athalye VR; Khanna P; Gowda S; Orsborn AL; Costa RM; Carmena JM
    Curr Biol; 2023 Jul; 33(14):2962-2976.e15. PubMed ID: 37402376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmenting intracortical brain-machine interface with neurally driven error detectors.
    Even-Chen N; Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    J Neural Eng; 2017 Dec; 14(6):066007. PubMed ID: 29130452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.